Issue |
A&A
Volume 613, May 2018
|
|
---|---|---|
Article Number | A35 | |
Number of page(s) | 18 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201731923 | |
Published online | 28 May 2018 |
Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy★
1
Finnish Centre for Astronomy with ESO (FINCA), University of Turku,
Väisäläntie 20,
21500
Piikkiö, Finland
e-mail: hanindyo.kuncarayakti@utu.fi
2
Tuorla Observatory, Department of Physics and Astronomy, University of Turku,
Väisäläntie 20,
21500
Piikkiö, Finland
3
Millennium Institute of Astrophysics,
Casilla 36-D,
Santiago, Chile
4
Departamento de Astronomía, Universidad de Chile,
Casilla 36-D,
Santiago, Chile
5
European Southern Observatory, Alonso de Córdova 3107,
Vitacura,
Casilla
19001,
Santiago, Chile
6
PITT PACC, Department of Physics and Astronomy, University of Pittsburgh,
Pittsburgh,
PA
15260,
USA
7
Department of Astronomy, Graduate School of Science, Kyoto University,
Sakyo-ku,
Kyoto
606-8502, Japan
8
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,
5-1-5 Kashiwanoha,
Kashiwa,
Chiba
277-8583, Japan
9
Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road,
Berkeley,
CA
94720, USA
10
Astronomy Program, Department of Physics and Astronomy, Seoul National University,
599 Gwanak-ro, Gwanak-gu,
Seoul,
151-742, Korea
11
Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences,
650 North A’ohoku Place, Hilo,
HI
96720, USA
12
Institute of Astronomy, Graduate School of Science, University of Tokyo,
2-21-1, Osawa, Mitaka,
Tokyo
181-0015, Japan
13
Research Center for the Early Universe, Graduate School of Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku,
Tokyo
113-0033, Japan
14
National Astronomical Observatory of Japan,
2-21-1, Osawa, Mitaka,
Tokyo
181-8588, Japan
15
Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies),
2-21-1, Osawa, Mitaka,
Tokyo
181-8588, Japan
Received:
9
September
2017
Accepted:
10
November
2017
Context. Observationally, supernovae (SNe) are divided into subclasses according to their distinct characteristics. This diversity naturally reflects the diversity in the progenitor stars. It is not entirely clear, however, how different evolutionary paths leading massive stars to become an SN are governed by fundamental parameters such as progenitor initial mass and metallicity.
Aims. This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses through a study of the parent stellar populations at the explosion sites.
Methods. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites.
Results. No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN type Ic, followed by type Ib, then types IIb and II. Type IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimates lower than 25 M⊙ are found; they are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channels only, and both single and binary channels are at play in the production of core-collapse SNe. Near-infrared IFS suggests that multiple stellar populations with different ages may be present in some of the SN sites. As a consequence, there could be a non-negligible amount of contamination from old populations, and therefore the individual age estimates are effectively lower limits.
Key words: supernovae: general / stars: massive
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.