Issue |
A&A
Volume 611, March 2018
|
|
---|---|---|
Article Number | A3 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201731741 | |
Published online | 13 March 2018 |
Polarimetry and spectroscopy of the “oxygen flaring” DQ Herculis-like nova: V5668 Sagittarii (2015)
1
Centre for Astronomy, School of Physics, National University of Ireland Galway,
University Road,
Galway, Ireland
e-mail: e.harvey2@nuigalway.ie; matt.redman@nuigalway.ie
2
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park,
Liverpool,
L3 5RF, UK
3
Physics Department, Lancaster University,
Lancaster,
LA1 4YB, UK
4
University of Turku, Tuorla Observatory,
Vaisalantie 20,
21500
Piikkio, Finland
Received:
8
August
2017
Accepted:
22
November
2017
Context. Classical novae are eruptions on the surface of a white dwarf in a binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell of gas and dust around the system. The three-dimensional structure of these shells is difficult to untangle when viewed on the plane of the sky. In this work a geometrical model is developed to explain new observations of the 2015 nova V5668 Sagittarii.
Aim. We aim to better understand the early evolution of classical nova shells in the context of the relationship between polarisation, photometry, and spectroscopy in the optical regime. To understand the ionisation structure in terms of the nova shell morphology and estimate the emission distribution directly following the light curve’s dust-dip.
Methods. High-cadence optical polarimetry and spectroscopy observations of a nova are presented. The ejecta is modelled in terms of morpho-kinematics and photoionisation structure.
Results. Initially observational results are presented, including broadband polarimetry and spectroscopy of V5668 Sgr nova during eruption. Variability over these observations provides clues towards the evolving structure of the nova shell. The position angle of the shell is derived from polarimetry, which is attributed to scattering from small dust grains. Shocks in the nova outflow are suggested in the photometry and the effect of these on the nova shell are illustrated with various physical diagnostics. Changes in density and temperature as the super soft source phase of the nova began are discussed. Gas densities are found to be of the order of 109 cm−3 for the nova in its auroral phase. The blackbody temperature of the central stellar system is estimated to be around 2.2 × 105 K at times coincident with the super soft source turn-on. It was found that the blend around 4640 Å commonly called “nitrogen flaring” is more naturally explained as flaring of the O II multiplet (V1) from 4638–4696 Å, i.e. “oxygen flaring”.
Conclusions. V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova’s evolving outflow. The high densities that were found early-on combined with knowledge of the system’s behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual “cusps” are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.
Key words: techniques: spectroscopic / techniques: polarimetric / methods: observational / stars: individual: V5668 Sgr / methods: numerical / novae, cataclysmic variables
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.