Issue |
A&A
Volume 609, January 2018
|
|
---|---|---|
Article Number | A27 | |
Number of page(s) | 20 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201730452 | |
Published online | 22 December 2017 |
The distribution of stars around the Milky Way’s central black hole
II. Diffuse light from sub-giants and dwarfs
1 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain
e-mail: rainer@iaa.es
2 Institute of Space Sciences (ICE, CSIC) & Institut d’Estudis Espacials de Catalunya (IEEC) at Campus UAB, Carrer de Can Magrans s/n 08193 Barcelona, Spain
3 Institute of Applied Mathematics, Academy of Mathematics and Systems Science, CAS, Beijing 100190, PR China
4 Kavli Institute for Astronomy and Astrophysics, Beijing 100871, PR China
5 Zentrum für Astronomie und Astrophysik, TU Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
6 School of Mathematics and Physics, University of Queensland St. Lucia, QLD 4068, Australia
Received: 18 January 2017
Accepted: 3 October 2017
Context. This is the second of three papers that search for the predicted stellar cusp around the Milky Way’s central black hole, Sagittarius A*, with new data and methods.
Aims. We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*.
Methods. We used adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we removed the light from all detected stars above a given magnitude limit. Subsequently we analysed the remaining, diffuse light density. Systematic uncertainties were constrained by the use of data from different observing epochs and obtained with different filters. We show that it is necessary to correct for the diffuse emission from the mini-spiral, which would otherwise lead to a systematically biased light density profile. We used a Paschen α map obtained with the Hubble Space Telescope for this purpose.
Results. The azimuthally averaged diffuse surface light density profile within a projected distance of R ≲ 0.5 pc from Sagittarius A* can be described consistently by a single power law with an exponent of Γ = 0.26 ± 0.02stat ± 0.05sys, similar to what has been found for the surface number density of faint stars in Paper I.
Conclusions. The analysed diffuse light arises from sub-giant and main-sequence stars with Ks ≈ 19−22 with masses of 0.8−1.5 M⊙. These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Way’s central black hole. We find that a Nuker law provides an adequate description of the nuclear cluster’s intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is γ = 1.13 ± 0.03model ± 0.05sys. The stellar density decreases more steeply beyond a break radius of about 3 pc, which corresponds roughly to the radius of influence of the massive black hole. At a distance of 0.01 pc from the black hole, we estimate a stellar mass density of 2.6 ± 0.3 × 107 M⊙ pc-3 and a total enclosed stellar mass of 180 ± 30 M⊙. These estimates assume a constant mass-to-light ratio and do not take stellar remnants into account. The fact that a flat projected surface density is observed for old giants at projected distances R ≲ 0.3 pc implies that some mechanism may have altered their appearance or distribution.
Key words: infrared: stars / Galaxy: structure / Galaxy: center
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.