Issue |
A&A
Volume 609, January 2018
|
|
---|---|---|
Article Number | A69 | |
Number of page(s) | 7 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201629920 | |
Published online | 09 January 2018 |
Numerical modeling of the 1840s major eruption of η Carinae as an explosion
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 3-72 (Xangari), 58089 Morelia, Michoacán, México
e-mail: rf.gonzalez@crya.unam.mx
Received: 18 October 2016
Accepted: 14 November 2017
In this paper, new two-dimensional hydrodynamical simulations of η Car’s nebulae are performed. In the 1840s, the massive star η Car suffered a major eruption that resulted in the formation of a bipolar structure, which is commonly known as the large Homunculus. During this event, η Car expelled into the circumstellar material a total mass of ~10 M⊙ and released a total energy of Ek ~ 1050 erg over a very short time (≤5 yr). These kinds of explosive events are frequently called supernova impostors due to their resemblance to a type II supernova, but the stars survive the explosion. In the case of η Car, a brief explosion scenario provides a potential explanation for the behavior of the historical light curve of η Car a few years (~10 yr) after the nineteenth century outburst. Here, such an alternative scenario of an explosion is assumed (instead of a super-Eddington wind) in order to investigate whether an explosive event is also able to explain the shape and kinematics of the large Homunculus. I show that the numerical simulations presented here indeed resemble some of the observed features of the nebula, such as the present-day double-shell structure of the Homunculus, with a thin outer dense shell and a thicker inner layer, as well as thermal instabilities (Rayleigh-Taylor and Kelvin-Helmholtz) along the dense shell that may lead to the current mottled appearance of the large Homunculus. Nonetheless, the explosion model for the 1840s major eruption of η Car is not able to account for the estimated age of the large Homunculus.
Key words: stars: individual: ηCarinae / stars: winds, outflows / hydrodynamics / shock waves
© ESO, 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.