Issue |
A&A
Volume 608, December 2017
|
|
---|---|---|
Article Number | A19 | |
Number of page(s) | 8 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201730588 | |
Published online | 30 November 2017 |
“TNOs are Cool”: A survey of the trans-Neptunian region
XIII. Statistical analysis of multiple trans-Neptunian objects observed with Herschel Space Observatory⋆
1 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon Principal Cedex, France
e-mail: irina.kovalenko@obspm.fr
2 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
3 Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstrasse, 85748 Garching, Germany
4 University of Arizona, 85721 Tucson, USA
5 Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya 48, 119017 Moscow, Russia
Received: 9 February 2017
Accepted: 18 September 2017
Context. Gravitationally bound multiple systems provide an opportunity to estimate the mean bulk density of the objects, whereas this characteristic is not available for single objects. Being a primitive population of the outer solar system, binary and multiple trans-Neptunian objects (TNOs) provide unique information about bulk density and internal structure, improving our understanding of their formation and evolution.
Aims. The goal of this work is to analyse parameters of multiple trans-Neptunian systems, observed with Herschel and Spitzer space telescopes. Particularly, statistical analysis is done for radiometric size and geometric albedo, obtained from photometric observations, and for estimated bulk density.
Methods. We use Monte Carlo simulation to estimate the real size distribution of TNOs. For this purpose, we expand the dataset of diameters by adopting the Minor Planet Center database list with available values of the absolute magnitude therein, and the albedo distribution derived from Herschel radiometric measurements. We use the 2-sample Anderson–Darling non-parametric statistical method for testing whether two samples of diameters, for binary and single TNOs, come from the same distribution. Additionally, we use the Spearman’s coefficient as a measure of rank correlations between parameters. Uncertainties of estimated parameters together with lack of data are taken into account. Conclusions about correlations between parameters are based on statistical hypothesis testing.
Results. We have found that the difference in size distributions of multiple and single TNOs is biased by small objects. The test on correlations between parameters shows that the effective diameter of binary TNOs strongly correlates with heliocentric orbital inclination and with magnitude difference between components of binary system. The correlation between diameter and magnitude difference implies that small and large binaries are formed by different mechanisms. Furthermore, the statistical test indicates, although not significant with the sample size, that a moderately strong correlation exists between diameter and bulk density.
Key words: Kuiper belt: general / methods: statistical
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.