Issue |
A&A
Volume 605, September 2017
|
|
---|---|---|
Article Number | A1 | |
Number of page(s) | 18 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201630217 | |
Published online | 29 August 2017 |
Kinematics of the local disk from the RAVE survey and the Gaia first data release
1 Institut Utinam, CNRS UMR 6213, Univ. Bourgogne Franche-Comté, OSU THETA, Observatoire de Besançon, BP 1615 25010 Besançon Cedex, France
e-mail: annie.robin@obs-besancon.fr
2 Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, 11 rue de l’Université, 67000 Strasbourg, France
Received: 8 December 2016
Accepted: 19 April 2017
Aims. We attempt to constrain the kinematics of the thin and thick disks using the Besançon population synthesis model together with RAVE DR4 and Gaia first data release (TGAS).
Methods. The RAVE fields were simulated by applying a detailed target selection function and the kinematics was computed using velocity ellipsoids depending on age in order to study the secular evolution. We accounted for the asymmetric drift computed from fitting a Stäckel potential to orbits. Model parameters such as velocity dispersions, mean motions, and velocity gradients were adjusted using an ABC-MCMC method. We made use of the metallicity to enhance the separation between thin and thick disks.
Results. We show that this model is able to reproduce the kinematics of the local disks in great detail. The disk follows the expected secular evolution, in very good agreement with previous studies of the thin disk. The new asymmetric drift formula, fitted to our previously described Stäckel potential, fairly well reproduces the velocity distribution in a wide solar neighborhood. The U and W components of the solar motion determined with this method agree well with previous studies. However, we find a smaller V component than previously thought, essentially because we include the variation of the asymmetric drift with distance to the plane. The thick disk is represented by a long period of formation (at least 2 Gyr), during which, as we show, the mean velocity increases with time while the scale height and scale length decrease, very consistently with a collapse phase with conservation of angular momentum.
Conclusions. This new Galactic dynamical model is able to reproduce the observed velocities in a wide solar neighborhood at the quality level of the TGAS-RAVE sample, allowing us to constrain the thin and thick disk dynamical evolution, as well as determining the solar motion.
Key words: galaxies: stellar content / galaxies: kinematics and dynamics / galaxies: formation / Galaxy: evolution / Galaxy: disk / solar neighborhood
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.