Issue |
A&A
Volume 604, August 2017
|
|
---|---|---|
Article Number | A63 | |
Number of page(s) | 5 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201730724 | |
Published online | 07 August 2017 |
K-shell photoabsorption and photoionization of trace elements
II. Isoelectronic sequences with electron number 12 ≤N ≤ 18
1 Department of Physics, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
e-mail: claudio.mendozaguardia@wmich.edu
2 Physique Atomique et Astrophysique, Université de Mons – UMONS, 20 place du Parc, 7000 Mons, Belgium
3 IPNAS, Université de Liège, Campus du Sart Tilman, Bât. B15, 4000 Liège, Belgium
4 ADNET Systems, Inc., Bethesda, MD 20817, USA
5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Received: 2 March 2017
Accepted: 22 April 2017
Context. We are concerned with improving the diagnostic potential of the K lines and edges of elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu, and Zn, that are observed in the X-ray spectra of supernova remnants, galaxy clusters, and accreting black holes and neutron stars.
Aims. Since accurate photoabsorption and photoionization cross sections are needed in their spectral models, they have been computed for isoelectronic sequences with electron number 12 ≤ N ≤ 18 using a multi-channel method.
Methods. Target representations are obtained with the atomic structure code autostructure, and ground-state cross sections are computed with the Breit-Pauli R-matrix method (bprm) in intermediate coupling, including damping (radiative and Auger) effects.
Results. Following the findings in our earlier work on sequences with 2 ≤ N ≤ 11, the contributions from channels associated with the 2s-hole [2s] μ target configurations and those containing 3d orbitals are studied in the Mg (N = 12) and Ar (N = 18) isoelectronic sequences. Cross sections for the latter ions are also calculated in the isolated-resonance approximation as implemented in autostructure and compared with bprm to test their accuracy.
Conclusions. It is confirmed that the collisional channels associated with the [2s] μ target configurations must be taken into account owing to significant increases in the monotonic background cross section between the L and K edges. Target configurations with 3d orbitals give rise to fairly conspicuous unresolved transition arrays in the L-edge region, but to a much lesser extent in the K-edge that is our main concern; therefore, they have been neglected throughout owing to their computationally intractable channel inventory, thus allowing the computation of cross sections for all the ions with 12 ≤ N ≤ 18 in intermediate coupling with bprm. We find that the isolated-resonance approximations performs satisfactorily and will be our best choice to tackle the systems with ground configuration 3p63dm (3 ≤ m ≤ 8) in isoelectronic sequences with N> 20.
Key words: atomic data / X-rays: general
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.