Issue |
A&A
Volume 604, August 2017
|
|
---|---|---|
Article Number | A10 | |
Number of page(s) | 18 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201629843 | |
Published online | 26 July 2017 |
Giant planet formation at the pressure maxima of protoplanetary disks
1 Planetary Science Group, Astrophysical Institute of La Plata, National Scientific and Technical Research Council and National University of La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
e-mail: oguilera@fcaglp.unlp.edu.ar
2 Planetary Science Group, Faculty of Astronomical and Geophysical Sciences, National University of La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
3 Department of Astronomy, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétany 1/A, Hungary
e-mail: Zs.Sandor@astro.elte.hu
Received: 4 October 2016
Accepted: 13 March 2017
Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer size planetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On the other hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation, favoring the formation of massive cores.
Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary disk and their implications for the formation of massive cores as triggering a gaseous runaway accretion phase.
Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosity region in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets is also considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and the surrounding gas.
Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planet migration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressure maxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locations are not exactly at the same positions. Thus, a planet’s semi-major axis oscillations around zero torque locations predicted by MHD and HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima.
Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferential locations for the formation and trap of massive cores.
Key words: planets and satellites: formation / planets and satellites: gaseous planets / protoplanetary disks
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.