Issue |
A&A
Volume 600, April 2017
|
|
---|---|---|
Article Number | A63 | |
Number of page(s) | 8 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201629571 | |
Published online | 31 March 2017 |
A new method to suppress the bias in polarised intensity
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: peter@mpifr-bonn.mpg.de
Received: 23 August 2016
Accepted: 18 December 2016
Context. Computing polarised intensities from noisy data in Stokes U and Q suffers from a positive bias that should be suppressed.
Aims. We aim to develop a correction method that, when applied to maps, should provide a distribution of polarised intensity that closely follows the signal from the source.
Methods. We propose a new method to suppress the bias by estimating the polarisation angle of the source signal in a noisy environment with help of a modified median filter. We then determine the polarised intensity, including the noise, by projection of the observed values of Stokes U and Q onto the direction of this polarisation angle.
Results. We show that our new method represents the true signal very well. If the noise distribution in the maps of U and Q is Gaussian, then in the corrected map of polarised intensity it is also Gaussian. Smoothing to larger Gaussian beamsizes, to improve the signal-to-noise ratio, can be done directly with our method in the map of the polarised intensity. Our method also works in case of non-Gaussian noise distributions.
Conclusions. The maps of the corrected polarised intensities and polarisation angles are reliable even in regions with weak signals and provide integrated flux densities and degrees of polarisation without the cumulative effect of the bias, which especially affects faint sources. Features at low intensity levels like “depolarisation canals” are smoother than in the maps using the previous methods, which has broader implications, for example on the interpretation of interstellar turbulence.
Key words: methods: data analysis / techniques: image processing / techniques: polarimetric / radio continuum: general
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.