Issue |
A&A
Volume 599, March 2017
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201629293 | |
Published online | 02 March 2017 |
First detection of hydrogen in the β Pictoris gas disk
1 CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France
e-mail: paul.wilson@iap.fr
2 UPMC Univ. Paris 6, UMR 7095, Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France
3 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland
4 School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
5 Univ. Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG, UMR 5274), 38000 Grenoble, France
6 CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG, UMR 5274), 38000 Grenoble, France
Received: 12 July 2016
Accepted: 5 December 2016
The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
Key words: stars: individual: β Pictoris / circumstellar matter / planetary systems / ISM: abundances / protoplanetary disks / stars: luminosity function, mass function
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.