Issue |
A&A
Volume 599, March 2017
|
|
---|---|---|
Article Number | A13 | |
Number of page(s) | 11 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201628641 | |
Published online | 20 February 2017 |
Suprathermal helium in corotating interaction regions: combined observations from SOHO/CELIAS/STOF and ACE/SWICS
1 Institut für Experimentelle und Angewandte Physik (IEAP), Christian-Albrechts-Universität zu Kiel, Leibnizstrasse 11, 24118 Kiel, Germany
e-mail: yu@physik.uni-kiel.de
2 University of Bern, 3012 Bern, Switzerland
3 Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
4 Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
Received: 5 April 2016
Accepted: 1 November 2016
Context. Energetic particle enhancements that are associated with corotating interaction regions (CIRs) are typically believed to arise from the sunward propagation of particles that are accelerated by CIR-driven shocks beyond 1 AU. It is expected that these sunward-travelling particles will lose energy and scatter, resulting in a turnover of the energy spectra below ~0.5 MeV/nuc. However, the turnover has not been observed so far, suggesting that the CIR-associated low-energy suprathermal ions are accelerated locally close to the observer.
Aims. We investigate the variability of suprathermal particle spectra from CIR to CIR as well as their evolution and variation as the observer moves away from the rear shock or wave.
Methods. Helium data in the suprathermal energy range from the Solar and Heliospheric Observatory/Charge, Element, and Isotope Analysis System/Suprathermal Time-of-Flight (SOHO/CELIAS/STOF) were used for the spectral analysis and were combined with data from the Advanced Composition Explorer/ Solar Wind Ion Composition Spectrometer (ACE/SWICS) in the solar wind energies.
Results. We investigated sixteen events: nine clean CIR events, three CIR events with possible contamination from upstream ion events or solar energetic particles (SEPs), and four events that occurred during CIR periods that were dominated by SEPs. Six of the nine clean CIR events showed possible signs of a turnover between ~10−40 keV/nuc in the fast solar wind that trails the compression regions. Three of them even showed this behaviour inside the compressed fast wind. The turnover part of the spectra became flatter and shifted from lower to higher energies with increasing connection distance to the reverse shock. The remaining three clean events showed continuous power-law spectra in both the compressed fast wind and fast wind regions, that is, the same behaviour as reported from previous observations. The spectra of the seven remaining events are more variable, that is, they show power law, turnover, and a superposition of these two shapes.
Key words: acceleration of particles / shock waves / solar wind / Sun: heliosphere / Sun: rotation
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.