Issue |
A&A
Volume 598, February 2017
|
|
---|---|---|
Article Number | A44 | |
Number of page(s) | 13 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201629697 | |
Published online | 27 January 2017 |
Langmuir wave electric fields induced by electron beams in the heliosphere
SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
e-mail: hamish.reid@glasgow.ac.uk
Received: 12 September 2016
Accepted: 21 November 2016
Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar wind density turbulence changes the probability distribution functions, mean value and variance of the beam-driven electric field distributions. Simulations show rather complicated forms of the distribution that are dependent upon how the electric fields are sampled. Generally the higher magnitude of density fluctuations reduce the mean and increase the variance of the distribution in a consistent manor to the predictions from resonance broadening by density fluctuations. We also demonstrate how the properties of the electric field distribution should vary radially from the Sun to the Earth and provide a numerical prediction for the in situ measurements of the upcoming Solar Orbiter and Solar Probe Plus spacecraft.
Key words: Sun: heliosphere / Sun: particle emission / Sun: radio radiation / solar wind / Sun: flares / Sun: magnetic fields
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.