Issue |
A&A
Volume 598, February 2017
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 9 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201629637 | |
Published online | 08 February 2017 |
Period spacing of gravity modes strongly affected by rotation
Going beyond the traditional approximation
1 Laboratoire AIM Paris-Saclay, CEA/DRF – CNRS – Université Paris Diderot, IRFU/SAp Centre de Saclay, 91191 Gif-sur-Yvette, France
e-mail: vincent.prat@cea.fr
2 Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching bei München, Germany
3 Université de Toulouse; UPS-OMP; IRAP, 31000 Toulouse, France
4 CNRS; IRAP; 14 avenue Édouard Belin, 31400 Toulouse, France
Received: 2 September 2016
Accepted: 28 November 2016
Context. As of today, asteroseismology mainly allows us to probe the internal rotation of stars when modes are only weakly affected by rotation using perturbative methods. Such methods cannot be applied to rapidly rotating stars, which exhibit complex oscillation spectra. In this context, the so-called traditional approximation, which neglects the terms associated with the latitudinal component of the rotation vector, describes modes that are strongly affected by rotation. This approximation is sometimes used for interpreting asteroseismic data, however, its domain of validity is not established yet.
Aims. We aim at deriving analytical prescriptions for period spacings of low-frequency gravity modes strongly affected by rotation through the full Coriolis acceleration (i.e. without neglecting any component of the rotation vector), which can be used to probe stellar internal structure and rotation.
Methods. We approximated the asymptotic theory of gravito-inertial waves in uniformly rotating stars using ray theory described in a previous paper in the low-frequency regime, where waves are trapped near the equatorial plane. We put the equations of ray dynamics into a separable form and used the Einstein-Brillouin-Keller (EBK) quantisation method to compute modes frequencies from rays.
Results. Two spectral patterns that depend on stratification and rotation are predicted within this new approximation: one for axisymmetric modes and one for non-axisymmetric modes.
Conclusions. The detection of the predicted patterns in observed oscillation spectra would give constraints on internal rotation and chemical stratification of rapidly rotating stars exhibiting gravity modes, such as γ Doradus, SPB, or Be stars. The obtained results have a mathematical form that is similar to that of the traditional approximation, but the new approximation takes the full Coriolis, which allows for propagation near the centre, and centrifugal accelerations into account.
Key words: asteroseismology / waves / chaos / stars: oscillations / stars: rotation
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.