Issue |
A&A
Volume 592, August 2016
|
|
---|---|---|
Article Number | A110 | |
Number of page(s) | 10 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201628287 | |
Published online | 08 August 2016 |
The self-coherent camera as a focal plane fine phasing sensor
1 Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, Parc Valrose, Bât. Fizeau, 06108 Nice Cedex 2, France
e-mail: Pierre.Janin-Potiron@oca.eu
2 LESIA, Observatoire de Paris, CNRS and Université Denis Diderot Paris 7, 5 place Jules Janssen, 92195 Meudon, France
Received: 10 February 2016
Accepted: 23 May 2016
Context. Direct imaging of Earth-like exoplanets requires very high contrast imaging capability and high angular resolution. Primary mirror segmentation is a key technological solution for large-aperture telescopes because it opens the path toward significantly increasing the angular resolution. The segments are kept aligned by an active optics system that must reduce segment misalignments below tens of nm rms to achieve the high optical quality required for astronomical science programs.
Aims. The development of cophasing techniques is mandatory for the next generation of space- and ground-based segmented telescopes, which both share the need for increasing spatial resolution. We propose a new focal plane cophasing sensor that exploits the scientific image of a coronagraphic instrument to retrieve simultaneously piston and tip-tilt misalignments.
Methods. The self-coherent camera phasing sensor (SCC-PS) adequately combines the SCC properties to segmented telescope architectures with adapted segment misalignment estimators and image processing. An overview of the system architecture, and a thorough performance and sensitivity analysis, including a closed-loop efficiency, are presented by means of numerical simulations.
Results. The SCC-PS estimates simultaneously piston and tip-tilt misalignments and corrects them in closed-loop operation in a few iterations. As opposed to numerous phasing sensor concepts the SCC-PS does not require any a priori on the signal at the segment boundaries or any dedicated optical path. We show that the SCC-PS has a moderate sensitivity to misalignments, virtually none to pupil shear, and is by principle insensitive to segment gaps and edge effects. Primary mirror phasing can be achieved with a relatively bright natural guide star with the SCC-PS.
Conclusions. The SCC-PS is a noninvasive concept and an efficient phasing sensor from the image domain. It is an attractive candidate for segment cophasing at the instrument level or alternatively at the telescope level, as usually envisioned in current space- and ground-based observatories.
Key words: instrumentation: adaptive optics / instrumentation: high angular resolution / methods: numerical / telescopes
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.