Issue |
A&A
Volume 590, June 2016
|
|
---|---|---|
Article Number | A108 | |
Number of page(s) | 17 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201628223 | |
Published online | 24 May 2016 |
CLASH-VLT: Strangulation of cluster galaxies in MACS J0416.1-2403 as seen from their chemical enrichment⋆
1
University of ViennaDepartment of Astrophysics,
Tuerkenschanzstrasse 17,
1180
Vienna, Austria
e-mail: christian.maier@univie.ac.at
2
INAF−Osservatorio Astronomico di Trieste,
via G. B. Tiepolo 11,
34133
Trieste,
Italy
3
Dipartimento di Fisica, Università degli Studi di
Trieste, via Tiepolo
11, 34143
Trieste,
Italy
4
INAF−Osservatorio Astronomico di Capodimonte,
via Moiariello 16, 80131
Napoli,
Italy
5
Dipartimento di Fisica e Scienze della Terra, Università di
Ferrara, via Saragat
1, 44122
Ferrara,
Italy
6
INAF−Istituto di Astrofisica Spaziale e Fisica cosmica (IASF)
Milano, via Bassini
15, 20133
Milano,
Italy
7
Dark Cosmology Centre, Niels Bohr Institute, University of
Copenhagen, Juliane Maries Vej
30, 2100
Copenhagen,
Denmark
Received: 29 January 2016
Accepted: 18 March 2016
Aims. Environmental effects gain importance as large scale structures in the Universe develop with time and have become the dominant mechanism for quenching galaxies of intermediate and low stellar masses at lower redshifts. Therefore, clusters of galaxies at z< 0.5 are the sites where environmental effects are expected to be more pronounced and more easily observed with present-day large telescopes.
Methods. We explore the Frontier Fields cluster MACS J0416.1-2403 at z = 0.3972 with VIMOS/VLT spectroscopy from the CLASH-VLT survey covering a region that corresponds to almost three virial radii. We measure fluxes of Hβ, [O III]λ 5007, Hα, and [N II]λ 6584 emission lines of cluster members enabling us to unambiguously derive O/H gas metallicities, and also star formation rates from extinction-corrected Hα fluxes. We compare our cluster galaxy sample with a field sample at z ~ 0.4 drawn from zCOSMOS.
Results. The 76 galaxies of our cluster sample follow the star-forming metallicity sequence in a diagnostic diagram disentangling ionizing sources. For intermediate masses we find a similar distribution of cluster and field galaxies in the mass vs. metallicity and mass vs. sSFR diagrams. An in-depth investigation furthermore reveals that bulge-dominated cluster galaxies have on average lower sSFRs and higher O/Hs than their disk-dominated counterparts. We use the location of galaxies in the projected velocity vs. position phase-space to separate our cluster sample into a region of objects accreted longer ago and a region of recently accreted and infalling galaxies. We find a higher fraction of accreted metal-rich galaxies (63%) compared to the fraction of 28% of metal-rich galaxies in the infalling regions. Intermediate-mass galaxies (9.2 < log (M/M⊙) < 10.2) falling into the cluster for the first time are found to be in agreement with predictions of the fundamental metallicity relation. In contrast, for already accreted star-forming galaxies of similar masses, we find on average metallicities higher than predicted by the models. This trend is intensified for accreted cluster galaxies of the lowest mass bin (log (M/M⊙) < 9.2), that display metallicities two to three times higher than predicted by models with primordial gas inflow. Environmental effects therefore strongly influence gas regulations and control gas metallicities of log (M/M⊙) < 10.2 cluster galaxies. We also investigate chemical evolutionary paths of model galaxies with and without inflow of gas showing that strangulation is needed to explain the higher metallicities of accreted cluster galaxies. Our results favor a strangulation scenario in which gas inflow stops for galaxies with log (M/M⊙) < 10.2 when accreted by the cluster.
Key words: galaxies: evolution / galaxies: clusters: individual: MACS J0416.1-2403 / galaxies: star formation / galaxies: abundances / galaxies: structure
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.