Issue |
A&A
Volume 590, June 2016
|
|
---|---|---|
Article Number | A2 | |
Number of page(s) | 14 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201527979 | |
Published online | 11 May 2016 |
Slingshot mechanism in Orion: Kinematic evidence for ejection of protostars by filaments
1
Max-Planck-Institute for Astronomy,
Königstuhl 17,
69117
Heidelberg,
Germany
e-mail:
stutz@mpia.de
2
Dept. of Astronomy, Ohio State University,
140 W. 18th Ave.,
Columbus, OH
43210,
USA
e-mail:
gould@astronomy.ohio-state.edu
Received: 16 December 2015
Accepted: 22 March 2016
By comparing three constituents of Orion A (gas, protostars, and pre-main-sequence stars), both morphologically and kinematically, we derive the following conclusions. The gas surface density near the integral-shaped filament (ISF) is very well represented by a power law, Σ(b) = 37 M⊙ pc-2(b/pc)−5/8, for the entire range to which we are sensitive, 0.05 pc < b < 8.5 pc, of projected separation from the filament ridge. Essentially all Class 0 and Class I protostars lie superposed on the ISF or on identifiable filament ridges farther south, while almost all pre-main-sequence (Class II) stars do not. Combined with the fact that protostars are moving ≲ 1 km s-1 relative to the filaments, while stars are moving several times faster, this implies that protostellar accretion is terminated by a slingshot-like “ejection” from the filaments. The ISF is the third in a series of identifiable star bursts that are progressively moving south, with separations of several Myr in time and 2–3 pc in space. This, combined with the observed undulations in the filament (both spatial and velocity), suggest that repeated propagation of transverse waves through the filament is progressively digesting the material that formerly connected Orion A and B into stars in discrete episodes. We construct a simple, circularly symmetric gas density profile ρ(r) = 17 M⊙ pc-3(r/pc)−13/8 consistent with the two-dimensional data. The model implies that the observed magnetic fields in this region are subcritical on spatial scales of the observed undulations, suggesting that the transverse waves propagating through the filament are magnetically induced. Because the magnetic fields are supercritical on scales of the filament as a whole (as traced by the power law), the system as a whole is relatively stable and long lived. Protostellar “ejection” (i.e., the slingshot) occurs because the gas accelerates away from the protostars, not the other way around. The model also implies that the ISF is kinematically young, which is consistent with several other lines of evidence. In contrast to the ISF, the southern filament (L1641) has a broken power law, which matches the ISF profile for 2.5 pc < b < 8.5 pc, but is shallower closer in. L1641 is kinematically older than the ISF.
Key words: ISM: clouds / stars: formation / ISM: structure
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.