Issue |
A&A
Volume 589, May 2016
|
|
---|---|---|
Article Number | A58 | |
Number of page(s) | 20 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201527970 | |
Published online | 13 April 2016 |
High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP)
I. Lucky imaging observations of 101 systems in the southern hemisphere⋆,⋆⋆
1
Astrophysics Group, Keele University,
Staffordshire
ST5 5BG,
UK
e-mail:
d.f.evans@keele.ac.uk
2
Centre for Electronic Imaging, Department of Physical Sciences,
The Open University, Milton
Keynes, MK7
6AA, UK
3
Niels Bohr Institute & Centre for Star and Planet
Formation, University of Copenhagen Øster Voldgade 5, 1350
Copenhagen,
Denmark
4
SUPA, School of Physics & Astronomy, University of St.
Andrews, North
Haugh, St. Andrews
KY16 9SS,
UK
5 Qatar Environment and Energy Research Institute (QEERI),
HBKU, Qatar Foundation, Doha, Qatar
6
Dark Cosmology Centre, Niels Bohr Institute, University of
Copenhagen, Juliane Maries Vej
30, 2100
Copenhagen,
Denmark
7
Dipartimento di Fisica “E.R. Caianiello”, Università di
Salerno, via Giovanni Paolo II
132, 84084
Fisciano,
Italy
8
Istituto Nazionale di Fisica Nucleare, Sezione di
Napoli, Napoli,
Italy
9
Meteorologisches Institut, Universität Hamburg,
Bundesstraße 55, 20146
Hamburg,
Germany
10
Max-Planck Institute for Astronomy, Königstuhl 17, 69117
Heidelberg,
Germany
11 Istituto Internazionale per gli Alti Studi Scientifici
(IIASS), via G. Pellegrino 19, 84019 Vietri sul Mare ( SA), Italy
12
European Southern Observatory, Karl-Schwarzschild Straße 2, 85748
Garching bei München,
Germany
13
Yunnan Observatories, Chinese Academy of Sciences,
650011
Kunming, PR
China
14
Key Laboratory for the Structure and Evolution of Celestial
Objects, Chinese Academy of Sciences, 650011
Kunming, PR
China
15
Korea Astronomy & Space Science Institute,
776 Daedukdae-ro, Yuseong-gu,
305-348
Daejeon, Republic of
Korea
16
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218,
USA
17
Jodrell Bank Centre for Astrophysics, School of Physics and
Astronomy, University of Manchester, Oxford Road, Manchester
M13 9PL,
UK
18
Finnish Centre for Astronomy with ESO (FINCA), Väisäläntie
20, 21500
Piikkiö,
Finland
19
Unidad de Astronomía, Fac. de Ciencias Básicas, Universidad de
Antofagasta, Avda. U. de
Antofagasta 02800, Antofagasta, Chile
20
CITEUC – Centre for Earth and Space Science Research of the
University of Coimbra, Observatório Astronómico da Universidade de
Coimbra, 3030-004
Coimbra,
Portugal
21
Instituto de Astrofísica, Facultad de Física, Pontificia
Universidad Católica de Chile, Av.
Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
22
Department of Physics, Sharif University of
Technology, PO Box 11155,
9161
Tehran,
Iran
23
Astronomisches Rechen-Institut, Zentrum für Astronomie,
Universität Heidelberg, Mönchhofstraße 12-14, 69120
Heidelberg,
Germany
24
Planetary and Space Sciences, Department ofPhysical Sciences, The
Open University, Milton
Keynes, MK7
6AA, UK
25
Institut d’Astrophysique et de Géophysique,
Allée du 6 Août 17, Sart Tilman, Bât.
B5c, 4000
Liège,
Belgium
26
Stellar Astrophysics Centre, Department of Physics and Astronomy,
Aarhus University, Ny Munkegade
120, 8000
Aarhus C,
Denmark
Received: 15 December 2015
Accepted: 9 March 2016
Context. Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discriminator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting exoplanets.
Aims. We observed 101 transiting exoplanet host systems in the Southern hemisphere in order to create a homogeneous catalogue of both bound companion stars and contaminating background stars, in an area of the sky where transiting exoplanetary systems have not been systematically searched for stellar companions. We investigate the binary fraction among the host stars in order to test theories for the formation of hot Jupiters.
Methods. Lucky imaging observations from the Two Colour Instrument on the Danish 1.54 m telescope at La Silla were used to search for previously unresolved stars at small angular separations. The separations and relative magnitudes of all detected stars were measured. For 12 candidate companions to 10 host stars, previous astrometric measurements were used to evaluate how likely the companions are to be physically associated.
Results. We provide measurements of 499 candidate companions within 20 arcsec of our sample of 101 planet host stars. 51 candidates are located within 5 arcsec of a host star, and we provide the first published measurements for 27 of these. Calibrations for the plate scale and colour performance of the Two Colour Instrument are presented.
Conclusions. We find that the overall multiplicity rate of the host stars is 38+17-13 %, consistent with the rate among solar-type stars in our sensitivity range, suggesting that planet formation does not preferentially occur in long period binaries compared to a random sample of field stars. Long period stellar companions (P> 10 yr) appear to occur independently of short period companions, and so the population of close-in stellar companions is unconstrained by our study.
Key words: planets and satellites: dynamical evolution and stability / planets and satellites: formation / techniques: high angular resolution / binaries: visual
Based on data collected by the MiNDSTEp consortium using the Danish 1.54 m telescope at the ESO La Silla observatory.
Full Tables 1, 4, and 8 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A58
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.