Issue |
A&A
Volume 589, May 2016
|
|
---|---|---|
Article Number | A56 | |
Number of page(s) | 24 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201527002 | |
Published online | 13 April 2016 |
Multiple dynamo modes as a mechanism for long-term solar activity variations
1
ReSoLVE Centre of Excellence, Department of Computer ScienceAalto
University,
PO Box 15400
00076
Aalto
Finland
e-mail: maarit.kapyla@aalto.fi
2 Department of Physics, Gustaf Hällströmin katu 2a (PO Box
64), 00014 University of Helsinki, Finland
3
Nordita, KTH Royal Institute of Technology and Stockholm
University, Roslagstullsbacken
23, 10691
Stockholm,
Sweden
4
Department of Astronomy, AlbaNova University Center, Stockholm
University, 10691
Stockholm,
Sweden
5
JILA and Department of Astrophysical and Planetary Sciences, Box
440, University of Colorado, Boulder, CO
80303,
USA
6
Laboratory for Atmospheric and Space Physics,
3665 Discovery Drive,
Boulder, CO
80303,
USA
7
Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig-Weg 3,
37077
Göttingen,
Germany
8
Tartu Observatory, 61602
Tõravere,
Estonia
Received: 20 July 2015
Accepted: 19 January 2016
Context. Solar magnetic activity shows both smooth secular changes, such as the modern Grand Maximum, and quite abrupt drops that are denoted as grand minima, such as the Maunder Minimum. Direct numerical simulations (DNS) of convection-driven dynamos offer one way of examining the mechanisms behind these events.
Aims. In this work, we analyze a solution of a solar-like DNS that was evolved for roughly 80 magnetic cycles of 4.9 years and where epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior.
Methods. The DNS employed is a semi-global (wedge-shaped) magnetoconvection model. For the data analysis tasks we use Ensemble Empirical Mode Decomposition and phase dispersion methods, as they are well suited for analyzing cyclic (non-periodic) signals.
Results. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like (equatorward migration at low latitudes and poleward at high latitudes). This mode is accompanied by a higher frequency mode near the surface and at low latitudes, showing poleward migration, and a low-frequency mode at the bottom of the convection zone. The low-frequency mode is almost purely antisymmetric with respect to the equator, while the dominant mode has strongly fluctuating mixed parity. The overall behavior of the dynamo solution is extremely complex, exhibiting variable cycle lengths, epochs of disturbed and even ceased surface activity, and strong short-term hemispherical asymmetries. Surprisingly, the most prominent suppressed surface activity epoch is actually a global magnetic energy maximum; during this epoch the bottom toroidal magnetic field obtains a maximum, demonstrating that the interpretation of grand minima-type events is non-trivial. The hemispherical asymmetries are seen only in the magnetic field, while the velocity field exhibits considerably weaker asymmetry.
Conclusions. We interpret the overall irregular behavior as being due to the interplay of the different dynamo modes showing different equatorial symmetries, especially the smoother part of the irregular variations being related to the variations of the mode strengths, evolving with different and variable cycle lengths. The abrupt low-activity epoch in the dominant dynamo mode near the surface is related to a strong maximum of the bottom toroidal field strength, which causes abrupt disturbances especially in the differential rotation profile via the suppression of the Reynolds stresses.
Key words: convection / turbulence / dynamo / Sun: magnetic fields / Sun: activity / stars: activity
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.