Issue |
A&A
Volume 584, December 2015
|
|
---|---|---|
Article Number | A95 | |
Number of page(s) | 11 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201527156 | |
Published online | 27 November 2015 |
Lepto-hadronic model for the broadband emission of Cygnus X-1
1
Instituto Argentino de Radioastronomía (IAR-CONICET),
C. C. 5, 1894 Villa Elisa,
Buenos Aires,
Argentina
e-mail: carolina@iar.unlp.edu.ar
2
Facultad de Ciencias Astronómicas y Geofísicas, Universidad
Nacional de La Plata (FCAG-UNLP), Paseo del Bosque S/N, 1900 La Plata, Buenos Aires,
Argentina
Received:
10
August
2015
Accepted:
28
September
2015
Context. Cygnus X-1 is a well-observed microquasar. Broadband observations at all wavelengths have been collected over the years. The origin of the MeV tail observed with COMPTEL and INTEGRAL is still under debate and it has mostly been attributed to the corona, although its high degree of polarization suggests that it is synchrotron radiation from a jet. The origin of the transient emission above ~100 GeV is also unclear.
Aims. We aim to clarify the origin of the broadband spectral energy distribution (SED) of Cygnus X-1, focusing particularly on the gamma-ray emission, and to gain information on the physical conditions inside the jets.
Methods. We developed a lepto-hadronic, inhomogeneous jet model and applied it to the non-thermal SED of Cygnus X-1. We calculated the contributions to the SED of both protons and electrons accelerated in an extended region of the jet. We also estimated the radiation of charged secondaries produced in hadronic interactions through several radiative processes. Absorption effects were considered. We produced synthetic maps of the jets at radio wavelengths.
Results. We find two sets of model parameters that lead to good fits of the SED. One of the models fits all the observations, including the MeV tail. This model also predicts hadronic gamma-ray emission slightly below the current upper limits. The flux predicted at 8.4 GHz is in agreement with the observations available in the literature, although the synthetic source is more compact than the imaged radio jet.
Conclusions. Our results show that the MeV emission in Cygnus X-1 may be jet synchrotron radiation. This depends mainly on the strength of the jet magnetic field and the location of the injection region of the relativistic particles. Our calculations show that there must be energetic electrons in the jets quite far from the black hole.
Key words: gamma rays: general / radiation mechanisms: non-thermal / X-rays: binaries / X-rays: individuals: Cygnus X-1
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.