Issue |
A&A
Volume 582, October 2015
|
|
---|---|---|
Article Number | A107 | |
Number of page(s) | 11 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201525906 | |
Published online | 20 October 2015 |
Constrained correlation functions from the Millennium Simulation
Argelander-Institut für Astronomie, Universität Bonn,
Auf dem Hügel 71,
53121
Bonn,
Germany
e-mail: pwilking@astro.uni-bonn.de; peter@astro.uni-bonn.de
Received: 16 February 2015
Accepted: 13 July 2015
Context. In previous work, we developed a quasi-Gaussian approximation for the likelihood of correlation functions that incorporates fundamental mathematical constraints on correlation functions, in contrast to the usual Gaussian approach. The analytical computation of these constraints is only feasible in the case of correlation functions of one-dimensional random fields.
Aims. In this work, we aim to obtain corresponding constraints in the case of higher dimensional random fields and test them in a more realistic context.
Methods. We develop numerical methods of computing the constraints on correlation functions that are also applicable for two- and three-dimensional fields. To test the accuracy of the numerically obtained constraints, we compare them to the analytical results for the one-dimensional case. Finally, we compute correlation functions from the halo catalog of the Millennium Simulation, check whether they obey the constraints, and examine the performance of the transformation used in the construction of the quasi-Gaussian likelihood.
Results. We find that our numerical methods of computing the constraints are robust and that the correlation functions measured from the Millennium Simulation obey them. Even though the measured correlation functions lie well inside the allowed region of parameter space, i.e., far away from the boundaries of the allowed volume defined by the constraints, we find strong indications that the quasi-Gaussian likelihood yields a substantially more accurate description than the Gaussian one.
Key words: methods: statistical / cosmological parameters / large-scale structure of Universe / galaxies: statistics / cosmology: miscellaneous
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.