Issue |
A&A
Volume 581, September 2015
|
|
---|---|---|
Article Number | A119 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201526759 | |
Published online | 18 September 2015 |
Hierarchical fragmentation and collapse signatures in a high-mass starless region⋆,⋆⋆
1
Max-Planck Institute for Astronomy,
Königstuhl 17,
69117
Heidelberg,
Germany
e-mail:
name@mpia.de
2
University of Leeds, Leeds, LS2
9JT, UK
3
Jodrell Bank Centre for Astrophysics, School of Physics and
Astronomy, The University of Manchester, Oxford Road, Manchester, M13
9PL, UK
4
Graduate School of Informatics and Engineering, The University of
Electro-Communications, Chofu,
182-8585
Tokyo,
Japan
5
Institute of Astronomy and Astrophysics, University of
Tübingen, Auf der Morgenstelle
10, 72076
Tübingen,
Germany
Received: 16 June 2015
Accepted: 27 July 2015
Aims. We study the fragmentation and collapse properties of the dense gas during the onset of high-mass star formation.
Methods. We observed the massive (~800 M⊙) starless gas clump IRDC 18310-4 with the Plateau de Bure Interferometer (PdBI) at subarcsecond resolution in the 1.07 mm continuum and N2H+(3–2) line emission.
Results. Zooming from a single-dish low-resolution map to previous 3 mm PdBI data, and now the new 1.07 mm continuum observations, the substructures hierarchically fragment on the increasingly smaller spatial scales. While the fragment separations may still be roughly consistent with pure thermal Jeans fragmentation, the derived core masses are almost two orders of magnitude larger than the typical Jeans mass at the given densities and temperatures. However, the data can be reconciled with models using non-homogeneous initial density structures, turbulence, and/or magnetic fields. While most subcores remain (far-)infrared dark even at 70 μm, we identify weak 70 μm emission toward one core with a comparably low luminosity of ~16 L⊙, supporting the notion of the general youth of the region. The spectral line data always exhibit multiple spectral components toward each core with comparably small line widths for the individual components (in the 0.3 to 1.0 km s-1 regime). Based on single-dish C18O(2–1) data we estimate a low virial-to-gas-mass ratio ≤ 0.25. We propose that the likely origin of these spectral properties may be the global collapse of the original gas clump that results in multiple spectral components along each line of sight. Even within this dynamic picture the individual collapsing gas cores appear to have very low levels of internal turbulence.
Key words: stars: formation / stars: early-type / techniques: spectroscopic / stars: individual: IRDC 18310 / ISM: clouds / ISM: kinematics and dynamics
Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
The continuum and spectral line data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A119
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.