Issue |
A&A
Volume 579, July 2015
|
|
---|---|---|
Article Number | A63 | |
Number of page(s) | 7 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201526143 | |
Published online | 29 June 2015 |
XMM-Newton observation of SNR J0533–7202 in the Large Magellanic Cloud⋆
1
Institut für Astronomie und Astrophysik, Kepler Center for Astro and
Particle Physics, Eberhard Karls Universität Tübingen,
Sand 1,
72076
Tübingen,
Germany
e-mail:
kavanagh@astro.uni-tuebingen.de
2
Max-Planck-Institut für extraterrestrische Physik,
Giessenbachstraße, 85748
Garching,
Germany
3
University of Western Sydney, Locked Bag 1791, Penrith, NSW
2751,
Australia
Received: 20 March 2015
Accepted: 24 May 2015
Aims. We present an X-ray study of the supernova remnant SNR J0533−7202 in the Large Magellanic Cloud (LMC) and determine its physical characteristics based on its X-ray emission.
Methods. We observed SNR J0533−7202 with XMM-Newton (background flare-filtered exposure times of 18 ks EPIC-pn and 31 ks EPIC-MOS1, EPIC-MOS2). We produced X-ray images of the supernova remnant, performed an X-ray spectral analysis, and compared the results to multi-wavelength studies.
Results. The distribution of X-ray emission is highly non-uniform, with the south-west region much brighter than the north-east. The detected X-ray emission is correlated with the radio emission from the remnant. We determine that this morphology is most likely due to the supernova remnant expanding into a non-uniform ambient medium and not an absorption effect. We estimate the remnant size to be 53.9 (±3.4) × 43.6 (±3.4) pc, with the major axis rotated ~64° east of north. We find no spectral signatures of ejecta emission and infer that the X-ray plasma is dominated by swept up interstellar medium. Using the spectral fit results and the Sedov self-similar solution, we estimate the age of SNR J0533−7202 to be ~17−27 kyr, with an initial explosion energy of (0.09−0.83) × 1051 erg. We detected an X-ray source located near the centre of the remnant, namely XMMU J053348.2−720233. The source type could not be conclusively determined due to the lack of a multi-wavelength counterpart and low X-ray counts. We found that it is likely either a background active galactic nucleus or a low-mass X-ray binary in the LMC.
Conclusions. We detected bright thermal X-ray emission from SNR J0533−7202 and determined that the remnant is in the Sedov phase of its evolution. The lack of ejecta emission prohibits us from typing the remnant with the X-ray data. Therefore, the likely Type Ia classification based on the local stellar population and star formation history reported in the literature cannot be improved upon.
Key words: ISM: supernova remnants / Magellanic Clouds / X-rays: ISM
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.