Issue |
A&A
Volume 579, July 2015
|
|
---|---|---|
Article Number | A67 | |
Number of page(s) | 19 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201425245 | |
Published online | 30 June 2015 |
Herschel⋆ PACS and SPIRE spectroscopy of the photodissociation regions associated with S 106 and IRAS 23133+6050
1
Department of Physics and AstronomyUniversity of Western
Ontario,
London,
ON
N6A 3K7,
Canada
e-mail:
dstock4@uwo.ca
2
Department of Astronomy, University of Maryland,
College Park, MD
20742,
USA
3
SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA
94043,
USA
4
Leiden Observatory, Leiden University,
PO Box 9513, 2300
RA, The
Netherlands
5
Instituut voor Sterrenkunde, Katholieke Universiteit
Leuven, Celestijnenlaan
200D, 3001
Leuven,
Belgium
6
Space Science Division, MS 245-6, NASA Ames Research Center,
Moffett Field, CA
94035,
USA
Received: 30 October 2014
Accepted: 23 April 2015
Context. Photodissociation regions (PDRs) contain a large portion of all of the interstellar matter in galaxies. Classical examples include the boundaries between ionized regions and molecular clouds in regions of massive star-formation, marking the point where all of the photons that are energetic enough to ionize hydrogen have been absorbed.
Aims. To determine the physical properties of the PDRs associated with the star-forming regions IRAS 23133+6050 and S 106 and present them in the context of other Galactic PDRs associated with massive star-forming regions.
Methods. We employ Herschel PACS and SPIRE spectroscopic observations to construct a full 55–650 μm spectrum of each object from which we measure the PDR cooling lines, other fine- structure lines, CO lines, and the total far-infrared flux. These measurements (and combinations thereof) are then compared to standard PDR models. Subsequently, detailed numerical PDR models are compared to these predictions, yielding additional insight into the dominant thermal processes in the PDRs and their structures.
Results. We find that the PDRs of each object are very similar and can be characterized by a two-phase PDR model with a very dense, highly UV irradiated phase (n ~ 106 cm-3, G0~105) interspersed within a lower density, weaker radiation field phase (n ~ 104 cm-3, G0~ 104). We employed two different numerical models to investigate the data. We first used RADEX models to fit the peak of the 12CO ladder, which in conjunction with the properties derived, yielded a temperature of around 300 K. Subsequent numerical modeling with a full PDR model revealed that the dense phase has a filling factor of around 0.6 in both objects. The shape of the 12CO ladder was consistent with these components, with heating dominated by grain photoelectric heating. An extra excitation component for the hightest-J lines (J> 20) is required for S 106.
Key words: ISM: general / ISM: molecules / photon-dominated region (PDR) / infrared: ISM / stars: formation / stars: massive
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.