Issue |
A&A
Volume 579, July 2015
|
|
---|---|---|
Article Number | A130 | |
Number of page(s) | 17 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201425073 | |
Published online | 17 July 2015 |
The Orion fingers: Near-IR adaptive optics imaging of an explosive protostellar outflow⋆
1
Department of Astrophysical and Planetary SciencesUniversity of
Colorado,
UCB 389
Boulder
CO
80309
USA
e-mail:
John.Bally@colorado.edu
2
ESO Headquarters, Karl-Schwarzschild-Str. 2,
85748
Garching bei München,
Germany
3
NSF Astronomy and Astrophysics Postdoctoral Fellow, Department of
Physics and Astronomy, Michigan State University, East Lansing, MI
48824,
USA
Received: 28 September 2014
Accepted: 5 February 2015
Aims. Adaptive optics (AO) images are used to test the hypothesis that the explosive BN/KL outflow from the Orion OMC1 cloud core was powered by the dynamical decay of a non-hierarchical system of massive stars.
Methods. Narrow-band H2, [Fe ii], and broad-band Ks obtained with the Gemini South multi-conjugate AO system GeMS and near-IR imager GSAOI are presented. The images reach resolutions of 0.08 to 0.10′′, close to the 0.07′′ diffraction limit of the 8-m telescope at 2.12 μm. Comparison with previous AO-assisted observations of sub-fields and other ground-based observations enable measurements of proper motions and the investigation of morphological changes in H2 and [Fe ii] features with unprecedented precision. The images are compared with numerical simulations of compact, high-density clumps moving ~103 times their own diameter through a lower density medium at Mach 103.
Results. Several sub-arcsecond H2 features and many [Fe ii] “fingertips” on the projected outskirts of the flow show proper motions of ~300 km s-1. High-velocity, sub-arcsecond H2 knots (“bullets”) are seen as far as 140′′ from their suspected ejection site. If these knots propagated through the dense Orion A cloud, their survival sets a lower bound on their densities of order 107 cm-3, consistent with an origin within a few au of a massive star and accelerated by a final multi-body dynamic encounter that ejected the BN object and radio source I from OMC1 about 500 yr ago.
Conclusions. Over 120 high-velocity bow-shocks propagating in nearly all directions from the OMC1 cloud core provide evidence for an explosive origin for the BN/KL outflow triggered by the dynamic decay of a non-hierarchical system of massive stars. Such events may be linked to the origin of runaway, massive stars.
Key words: ISM: jets and outflows / ISM: clouds / stars: formation
The final set of FITS files is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A130
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.