Issue |
A&A
Volume 576, April 2015
|
|
---|---|---|
Article Number | A49 | |
Number of page(s) | 19 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201424503 | |
Published online | 26 March 2015 |
Interplay of gas and ice during cloud evolution
1
Kapteyn Astronomical Institute, University of Groningen,
PO Box 800
9700 AV
Groningen,
The Netherlands
e-mail:
cazaux@astro.rug.nl
2
Max-Planck-Institüt für extraterrestrische Physik,
Giessenbachstrasse 1, 85748
Garching,
Germany
e-mail:
seyit@mpe.mpg.de
Received: 30 June 2014
Accepted: 9 January 2015
During the evolution of diffuse clouds to molecular clouds, gas-phase molecules freeze out on surfaces of small dust particles to form ices. On dust surfaces, water is the main constituent of the icy mantle in which a complex chemistry is taking place. We aim to study the formation pathways and the composition of the ices throughout the evolution of diffuse clouds. For this purpose, we used time-dependent rate equations to calculate the molecular abundances in the gas phase and on solid surfaces (onto dust grains). We fully considered the gas-dust interplay by including the details of freeze-out, chemical and thermal desorption, and the most important photo-processes on grain surfaces. The difference in binding energies of chemical species on bare and icy surfaces was also incorporated into our equations. Using the numerical code flash, we performed a hydrodynamical simulation of a gravitationally bound diffuse cloud and followed its contraction. We find that while the dust grains are still bare, water formation is enhanced by grain surface chemistry that is subsequently released into the gas phase, enriching the molecular medium. The CO molecules, on the other hand, tend to gradually freeze out on bare grains. This causes CO to be well mixed and strongly present within the first ice layer. Once one monolayer of water ice has formed, the binding energy of the grain surface changes significantly, and an immediate and strong depletion of gas-phase water and CO molecules occurs. While hydrogenation converts solid CO into formaldehyde (H2CO) and methanol (CH3OH), water ice becomes the main constituent of the icy grains. Inside molecular clumps formaldehyde is more abundant than water and methanol in the gas phase, owing its presence in part to chemical desorption.
Key words: astrochemistry / hydrodynamics / methods: numerical / stars: formation / dust, extinction / ISM: clouds
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.