Issue |
A&A
Volume 574, February 2015
|
|
---|---|---|
Article Number | A5 | |
Number of page(s) | 26 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201424593 | |
Published online | 15 January 2015 |
ALMA data suggest the presence of spiral structure in the inner wind of CW Leonis⋆
1
Instituut voor Sterrenkunde, Katholieke Universiteit Leuven,
Celestijnenlaan 200D,
3001
Leuven,
Belgium
e-mail:
Leen.Decin@ster.kuleuven.be
2
JBCA, Department Physics and Astronomy, University of
Manchester, Manchester
M13 9PL,
UK
3
The Johns Hopkins University, Baltimore, MD
21218,
USA
4
Instituto de Astronomía, Universidad Nacional Autónoma de
Mexico, Apdo. Postal 877, 22800
Ensenada, BC,
Mexico
5
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS
66, Cambridge,
MA
02138,
USA
Received: 13 July 2014
Accepted: 24 October 2014
Context. Evolved low-mass stars lose a significant fraction of their mass through stellar winds. While the overall morphology of the stellar wind structure during the asymptotic giant branch (AGB) phase is thought to be roughly spherically symmetric, the morphology changes dramatically during the post-AGB and planetary nebula phase, during which bipolar and multi-polar structures are often observed.
Aims. We aim to study the inner wind structure of the closest well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have implied a non-homogeneous mass-loss process for this star: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale, and multi-concentric shells are detected beyond 1′′.
Methods. We present the first ALMA Cycle 0 band 9 data around 650 GHz (450 μm) tracing the inner wind of CW Leo. The full-resolution data have a spatial resolution of 0.̋42 × 0.̋24, allowing us to study the morpho-kinematical structure of CW Leo within ~6′′.
Results. We have detected 25 molecular emission lines in four spectral windows. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position, which is assumed to be dominated by stellar emission. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and imply that the wind velocity increases rapidly from about 5 R⋆, almost reaching the terminal velocity at ~11 R⋆. The images prove that vibrational lines are excited close to the stellar surface and that SiO is a parent molecule. The channel maps for the brighter lines show a complex structure; specifically, for the 13CO J = 6–5 line, different arcs are detected within the first few arcseconds. The curved structure in the position-velocity (PV) map of the 13CO J = 6–5 line can be explained by a spiral structure in the inner wind of CW Leo, probably induced by a binary companion. From modelling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of ~10–20° to the north-east and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or ~8.2 R⋆). We tentatively estimate that the companion is an unevolved low-mass main-sequence star.
Conclusions. A scenario of a binary-induced spiral shell can explain the correlated structure seen in the ALMA PV images of CW Leo. Moreover, this scenario can also explain many other observational signatures seen at different spatial scales and in different wavelength regions, such as the bipolar structure and the almost concentric shells. ALMA data hence for the first time provide the crucial kinematical link between the dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen at arcsecond scale.
Key words: stars: AGB and post-AGB / stars: mass-loss / circumstellar matter / binaries: general / stars: individual: CW Leo
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.