Issue |
A&A
Volume 572, December 2014
|
|
---|---|---|
Article Number | A78 | |
Number of page(s) | 12 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201424809 | |
Published online | 01 December 2014 |
Can dust coagulation trigger streaming instability?
Heidelberg University, Center for Astronomy, Institute of Theoretical Astrophysics, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
e-mail: drazkowska@uni-heidelberg.de
Received: 14 August 2014
Accepted: 7 October 2014
Context. Streaming instability can be a very efficient way of overcoming growth and drift barriers to planetesimal formation. However, it was shown that strong clumping, which leads to planetesimal formation, requires a considerable number of large grains. State-of-the-art streaming instability models do not take into account realistic size distributions resulting from the collisional evolution of dust.
Aims. We investigate whether a sufficient quantity of large aggregates can be produced by sticking and what the interplay of dust coagulation and planetesimal formation is.
Methods. We develop a semi-analytical prescription of planetesimal formation by streaming instability and implement it in our dust coagulation code based on the Monte Carlo algorithm with the representative particles approach.
Results. We find that planetesimal formation by streaming instability may preferentially work outside the snow line, where sticky icy aggregates are present. The efficiency of the process depends strongly on local dust abundance and radial pressure gradient, and requires a super-solar metallicity. If planetesimal formation is possible, the dust coagulation and settling typically need ~100 orbits to produce sufficiently large and settled grains and planetesimal formation lasts another ~1000 orbits. We present a simple analytical model that computes the amount of dust that can be turned into planetesimals given the parameters of the disk model.
Key words: accretion, accretion disks / circumstellar matter / planets and satellites: formation / protoplanetary disks / methods: numerical
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.