Issue |
A&A
Volume 572, December 2014
|
|
---|---|---|
Article Number | A15 | |
Number of page(s) | 12 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201423378 | |
Published online | 20 November 2014 |
Dynamics of the envelope of a rapidly rotating star or giant planet in gravitational contraction
1
Université de Toulouse, UPS-OMP, IRAP, 31400
Toulouse, France
e-mail: hypolite.delphine@gmail.com
2
CNRS, IRAP, 14
avenue Édouard Belin, 31400
Toulouse,
France
Received:
7
January
2014
Accepted:
20
September
2014
Aims. We wish to understand the processes that control the fluid flows of a gravitationally contracting and rotating star or giant planet.
Methods. We consider a spherical shell containing an incompressible fluid that is slowly absorbed by the core so as to mimic gravitational contraction. We also consider the effects of a stable stratification that may modify the dynamics of a pre-main-sequence star of intermediate mass.
Results. This simple model reveals the importance of both the Stewartson layer attached to the core and the boundary conditions met by the fluid at the surface of the object. In the case of a pre-main-sequence star of intermediate mass where the envelope is stably stratified, shortly after the birth line, the spin-up flow driven by contraction overwhelms the baroclinic flow that would take place otherwise. This model also shows that for a contracting envelope, a self-similar flow of growing amplitude controls the dynamics. It suggests that initial conditions on the birth line are most probably forgotten. Finally, the model shows that the shear (Stewartson) layer that lies on the tangent cylinder of the core is likely a key feature of the dynamics that is missing in 1D models. This layer can explain the core and envelope rotational coupling that is required to explain the slow rotation of cores in giant and subgiant stars.
Key words: stars: rotation / hydrodynamics
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.