Issue |
A&A
Volume 571, November 2014
|
|
---|---|---|
Article Number | A35 | |
Number of page(s) | 5 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201424632 | |
Published online | 04 November 2014 |
Asteroseismic stellar activity relations
1
INAF − Osservatorio Astrofisico di Catania, via S. Sofia, 78,
95123
Catania
Italy
e-mail:
alfio.bonanno@inaf.it
2
Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan
200D, 3001
Leuven,
Belgium
3
Stellar Astrophysics Centre, Department of Physics and Astronomy,
Aarhus University, Ny Munkegade
120, 8000
Aarhus C,
Denmark
4
Department of Geoscience, Aarhus University,
Høegh-Guldbergs Gade 2,
8000
Aarhus C,
Denmark
Received: 18 July 2014
Accepted: 12 September 2014
Context. In asteroseismology an important diagnostic of the evolutionary status of a star is the small frequency separation which is sensitive to the gradient of the mean molecular weight in the stellar interior. It is thus interesting to discuss the classical age-activity relations in terms of this quantity. Moreover, as the photospheric magnetic field tends to suppress the amplitudes of acoustic oscillations, it is important to quantify the importance of this effect by considering various activity indicators.
Aims. We propose a new class of age-activity relations that connects the Mt. Wilson S index and the average scatter in the light curve with the small frequency separation and the amplitude of the p-mode oscillations.
Methods. We used a Bayesian inference to compute the posterior probability of various empirical laws for a sample of 19 solar-like active stars observed by the Kepler telescope.
Results. We demonstrate the presence of a clear correlation between the Mt. Wilson S index and the relative age of the stars as indicated by the small frequency separation, as well as an anti-correlation between the S index and the oscillation amplitudes. We argue that the average activity level of the stars shows a stronger correlation with the small frequency separation than with the absolute age that is often considered in the literature.
Conclusions. The phenomenological laws discovered in this paper have the potential to become new important diagnostics to link stellar evolution theory with the dynamics of global magnetic fields. In particular we argue that the relation between the Mt. Wilson S index and the oscillation amplitudes is in good agreement with the findings of direct numerical simulations of magneto-convection.
Key words: stars: activity / stars: oscillations / stars: chromospheres / methods: statistical
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.