Issue |
A&A
Volume 570, October 2014
|
|
---|---|---|
Article Number | A40 | |
Number of page(s) | 14 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201424727 | |
Published online | 14 October 2014 |
Abell 2384: the galaxy population of a cluster post-merger⋆
1
Institute for Astro- and Particle Physics, University of
Innsbruck,
Technikerstr. 25/8,
6020
Innsbruck,
Austria
e-mail:
florian.pranger@uibk.ac.at
2
Laboratoire Lagrange, UMR 7293, Université de Nice Sophia
Antipolis, CNRS, Observatoire de la Côte d’Azur, 06300
Nice,
France
Received: 1 August 2014
Accepted: 29 August 2014
Context. We present a spectrophotometric analysis of the galaxy population in the area of the merging cluster Abell 2384 at z = 0.094.
Aims. We investigate the impact of the complex cluster environment on galaxy properties, such as colour, morphology, and star formation rate.
Methods. We combined multi-object spectroscopy from the 2dF and EFOSC2 spectrographs with optical imaging of the inner 30 × 30 arcmin of A2384 taken with the ESO Wide Field Imager. We carried out a kinematical analysis using the EMMIX algorithm and biweight statistics. We address the possible presence of cluster substructures with the Dressler-Shectman test. Cluster galaxies are investigated with respect to [OII] and Hα equivalent width. Galaxies covered by our optical imaging observations are additionally analysed in terms of colour, star formation rate, and morphological descriptors, such as Gini coefficient and M20 index. We study cluster galaxy properties as a function of clustercentric distance and investigate the distribution of various galaxy types in colour−magnitude and physical space.
Results. The Dressler-Shectman test reveals a substructure in the east of the 2dF field of view. We determine the mass ratio between the northern and southern subclusters to be ≲1.6:1. In accordance with other cluster studies, we find that a large number of the disk galaxies close to the cluster core show no detectable star formation (SF). Probably these are systems that are quenched by ram-pressure stripping. The sample of quenched disks populates the transition area between the blue cloud and the red sequence in colour−magnitude space. We also find a population of morphologically distorted galaxies in the central cluster region.
Conclusions. The substructure east of A2384 might be a group of galaxies falling onto the main cluster. We speculate that our sample of quenched spirals represents an intermediate phase in the ram-pressure-driven transformation of infalling field spirals into cluster S0s. This is justified by their position in colour−magnitude space. The occurrence of morphologically distorted galaxies in the cluster core complies with the hypothesis of Abell 2384 representing a post merger system.
Key words: galaxies: clusters: general / galaxies: clusters: individual: Abell 2384 / galaxies: distances and redshifts / galaxies: evolution / cosmology: observations
The reduced spectra are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A40
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.