Issue |
A&A
Volume 570, October 2014
|
|
---|---|---|
Article Number | A43 | |
Number of page(s) | 10 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201423412 | |
Published online | 14 October 2014 |
Confirmation of bistable stellar differential rotation profiles
1 Department of Physics, Gustaf Hällströmin katu 2a ( PO Box 64), 00014 University of Helsinki, Finland
e-mail: petri.kapyla@helsinki.fi
2 ReSoLVE Centre of Excellence, Department of Information and Computer Science, Aalto University, PO Box 15400, 00076 Aalto, Finland
3 NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
4 Department of Astronomy, Stockholm University, 10691 Stockholm, Sweden
Received: 13 January 2014
Accepted: 18 June 2014
Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow.
Aims. We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (Λ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress.
Methods. We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the luminosity by a factor of roughly 106 and the rotation rate by a factor of 102. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection.
Results. Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions.
Conclusions. Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main-sequence evolution. As they slow down, they might be able to retain solar-like rotation for lower Coriolis numbers, and thus longer in time, before switching to anti-solar rotation. This could partially explain the puzzling findings of anti-solar rotation profiles for models in the solar parameter regime.
Key words: convection / turbulence / Sun: rotation / stars: rotation
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.