Issue |
A&A
Volume 568, August 2014
|
|
---|---|---|
Article Number | A27 | |
Number of page(s) | 7 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201423913 | |
Published online | 08 August 2014 |
Some like it cold: molecular emission and effective dust temperatures of dense cores in the Pipe Nebula⋆
1
University of ViennaDepartment of Astrophysics,
Türkenschanzstr. 17,
1180
Vienna,
Austria
e-mail:
jan.forbrich@univie.ac.at
2
Harvard-Smithsonian Center for Astrophysics, 60 Garden
Street, Cambridge
MA
02138,
USA
3
University of Milan, Department of Physics,
via Celoria 16, 20133
Milan,
Italy
4
CSIRO Astronomy and Space Science, Epping,
Sydney
NSW
1710,
Australia
Received: 31 March 2014
Accepted: 29 May 2014
Aims. The Pipe Nebula is characterized by a low star-formation rate and is therefore an ideal environment to explore how initial conditions, including core characteristics, affect star-formation efficiencies.
Methods. In a continued study of the molecular core population of the Pipe Nebula, we present a molecular-line survey of 52 cores. Previous research has shown a variety of different chemical evolutionary stages among the cores. Using the Mopra Radio Telescope, we observed the ground rotational transitions of HCO+, H13CO+, HCN, H13CN, HNC, and N2H+. These data are complemented with near-infrared extinction maps to constrain the column densities, effective dust temperatures derived from Herschel data, and NH3-based gas kinetic temperatures.
Results. The target cores are located across the nebula, span visual extinctions between 5 and 67 mag, and effective dust temperatures (averaged along the lines of sight) between 13 and 19 K. The extinction-normalized integrated line intensities, a proxy for the abundance in constant excitation conditions of optically thin lines, vary within an order of magnitude for a given molecule. The effective dust temperatures and gas kinetic temperatures are correlated, but the effective dust temperatures are consistently higher than the gas kinetic temperatures. Combining the molecular line and temperature data, we find that N2H+ is only detected toward the coldest and densest cores, while other lines show no correlation with these core properties.
Conclusions. Within this large sample, N2H+ is the only species to exclusively trace the coldest and densest cores, in agreement with chemical considerations. In contrast, the common high-density tracers HCN and HNC are present in a majority of the cores, demonstrating the utility of these molecules for characterizing cores over a wide range of extinctions. The correlation between the effective dust temperatures and the gas kinetic temperatures suggests that the former are dominated by dust that is both dense and thermodynamically coupled to the dense gas traced by NH3. A direct use of the effective dust temperatures in a determination of dust column densities from dust emission measurements would, however, result in an underestimate of the dust column densities.
Key words: stars: formation / dust, extinction / radio lines: ISM / submillimeter: ISM
Table 1 is available in electronic form at http://www.aanda.org
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.