Issue |
A&A
Volume 568, August 2014
|
|
---|---|---|
Article Number | A14 | |
Number of page(s) | 36 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201323324 | |
Published online | 07 August 2014 |
Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies⋆
1
CSIC – Departamento de Astrofísica-Centro de Astrobiología
(CSIC-INTA), Torrejón de
Ardoz, Madrid,
Spain
e-mail: arribas@cab.inta-csic.es
2
Cavendish Laboratory, University of Cambridge 19 J. J. Thomson
Avenue, Cambridge
CB3 0HE,
UK
3
Kavli Institute for Cosmology, University of
Cambridge, Madingley
Road, Cambridge
CB3 0HA,
UK
Received:
23
December
2013
Accepted:
31
March
2014
We study the kinematic properties of the ionised gas outflows and ambient interstellar medium (ISM) in a large and representative sample of local luminous and ultra-luminous infrared galaxies (U/LIRGs) (58 systems, 75 galaxies) at galactic and sub-galactic (i.e., star-forming clumps) scales, thanks to integral field spectroscopy (IFS)-based high signal-to-noise integrated spectra. The velocity dispersion of the ionized ISM in U/LIRGs (⟨ σ ⟩ ~ 70 km s-1) is larger than in lower luminosity local star-forming galaxies (⟨ σ ⟩ ~ 25 km s-1). While for isolated disc LIRGs star formation appears to sustain turbulence, gravitational energy release associated with interactions and mergers plays an important role in driving σ in the U/LIRG range. We find that σ has a dependency on the star formation rate density (ΣSFR), which is weaker than expected if it were driven by the energy released by the starburst. The relatively small role of star formation (SF) driving the σ in U/LIRGs is reinforced by the lack of an increase in σ associated with high luminosity SF clumps. We also find that the impact of an active galactic nucleus (AGN) in ULIRGs is strong, increasing on average σ by a factor 1.5. Low-z U/LIRGs cover a range of velocity dispersion (σ ~ 30 to 100 km s-1) and star formation rate density (ΣSFR ~ 0.1 to 20 M⊙ yr-1 kpc-2) similar to those of high-z SFGs. Moreover, the observed weak dependency of σ on ΣSFR for local U/LIRGs (σ ∝ ΣSFR+0.06) is in very good agreement with that measured in some high-z samples. The presence of ionized gas outflows in U/LIRGs seems universal based on the detection of a broad, usually blueshifted, Hα line. The observed dependency of the maximum velocity of the outflow (Vmax) on the star formation rate (SFR) is of the type Vmax(non − AGN) ∝ SFR(LIR)+ 0.24. We find that AGNs in U/LIRGs are able to generate faster (~×2) and more massive (~× 1.4) ionized gas outflows than pure starbursts. The derived ionized mass loading factors (η) are in general below 1, with only a few AGNs above this limit. The escaping gas fraction is low with only less massive (log(Mdyn/M⊙) < 10.4) U/LIRGs having outflowing terminal velocities higher than their escape velocities, and more massive galaxies retaining the gas, even if they host an AGN. The observed average outflow properties in U/LIRGs are similar to high-z galaxies of comparable SFR. However, while high-z galaxies seem to require ΣSFR > 1 M⊙ yr-1 kpc-2 for launching strong outflows, this threshold is not observed in low-z U/LIRGs even after correcting for the differential fraction of the gas content. In the bright SF clumps found in LIRGs, ionized gas outflows appear to be very common (detection rate over 80%). Their observed properties are less extreme than those associated with the entire galaxy. The clumps in LIRGs follow the general size-L-σ scaling relations found for low- and high-z clumps, though they are in general smaller, less luminous, and are characterized by lower σ than at high-z. For a given observed (no internal extinction correction applied) star formation surface density, outflows in LIRG clumps would be about one to two orders of magnitude less energetic than the outflows launched by clumps in high-z SF galaxies.
Key words: galaxies: ISM / galaxies: kinematics and dynamics / intergalactic medium / galaxies: clusters: general / galaxies: high-redshift
Tables 1, 2, and Appendices are available in electronic form at http://www.aanda.org
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.