Issue |
A&A
Volume 566, June 2014
|
|
---|---|---|
Article Number | A83 | |
Number of page(s) | 16 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201423803 | |
Published online | 18 June 2014 |
Chemical abundances of stars with brown-dwarf companions⋆
1 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
e-mail: dmata@iac.es; jonay@iac.es
2 Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
3 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
4 Departamento de Física e Astronomia, Faculdade de Cîencias, Universidade do Porto, Portugal
5 Observatoire Astronomique de l’Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Versoix, Switzerland
6 European Space Agency, European Space Astronomy Centre, PO Box 78, Villanueva de la Cañada, 28691 Madrid, Spain
Received: 13 March 2014
Accepted: 2 April 2014
Context. It is well known that stars with giant planets are, on average, more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not require to be metal-rich.
Aims. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry.
Methods. We employ standard and automatic tools to perform an equivalent width (EW) based analysis and to derive chemical abundances from the CORALIE spectra of stars with BD companions.
Results. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts, but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of α-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance, whereas for stars with low-mass and high-mass planets the [Xα/H] and [XFe/H] peak abundances remain at ~−0.1 dex and ~+0.15 dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, mC sin i, of the most massive substellar companion in each system, and we find a maximum in α-element as well as Fe-peak abundances at mC sin i ~ 1.35 ± 0.20 Jupiter masses.
Conclusions. We discuss the implications of these results in the context of the formation scenario of BDs compared with that of giant planets.
Key words: brown dwarfs / stars: abundances / planets and satellites: formation / planetary systems / stars: atmospheres
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.