Issue |
A&A
Volume 566, June 2014
|
|
---|---|---|
Article Number | A62 | |
Number of page(s) | 7 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201322188 | |
Published online | 12 June 2014 |
Relativistic effects on radiative ejection of coronae in variable X-ray sources
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warszawa, Poland
e-mail: mbhupe@camk.edu.pl; wlodek@camk.edu.pl
Received: 1 July 2013
Accepted: 13 March 2014
Context. Optically thin coronae around neutron stars suffering an X-ray burst can be ejected as a result of rapid increase in stellar luminosity. In general relativity, radiation pressure from the central luminous star counteracts gravitational attraction more strongly than in Newtonian physics. However, motion near the neutron star is very effectively impeded by the radiation field.
Aims. To explore the mechanisms leading to ejection of accretion disk coronae
Methods. We perform a general relativistic calculation of the motion of a test particle in a spherically symmetric radiation field.
Results. At every radial distance from the star larger than that of the innermost stable circular orbit (ISCO), and any initial luminosity of the star, there exists a luminosity change which leads to coronal ejection. The luminosity required to eject from the system the inner parts of the optically thin neutron-star corona is very high in the presence of radiation drag and always close to the Eddington luminosity. Outer parts of the corona, at a distance of 20 RG or more, will be ejected by a sub-Eddington outburst. Mildly fluctuating luminosity will lead to dissipation in the plasma and may explain the observed X-ray temperatures of coronae in low mass X-ray binaries. At large radial distances from the star (3 × 103 RG or more) the results do not depend on whether or not Poynting-Robertson drag is included in the calculation.
Key words: stars: neutron / stars: winds, outflows / X-rays: binaries / X-rays: bursts / scattering / accretion, accretion disks
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.