Issue |
A&A
Volume 563, March 2014
|
|
---|---|---|
Article Number | A116 | |
Number of page(s) | 9 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201323285 | |
Published online | 19 March 2014 |
Modulated cycles in an illustrative solar dynamo model with competing α-effects
School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
e-mail: l.cole@ncl.ac.uk; paul.bushby@ncl.ac.uk
Received: 19 December 2013
Accepted: 17 February 2014
Context. The large-scale magnetic field in the Sun varies with a period of approximately 22 years, although the amplitude of the cycle is subject to long-term modulation with recurrent phases of significantly reduced magnetic activity. It is believed that a hydromagnetic dynamo is responsible for producing this large-scale field, although this dynamo process is not well understood.
Aims. Within the framework of mean-field dynamo theory, our aim is to investigate how competing mechanisms for poloidal field regeneration (namely a time-delayed Babcock-Leighton surface α-effect and an interface-type α-effect), can lead to the modulation of magnetic activity in a deep-seated solar dynamo model.
Methods. We solve the standard αΩ dynamo equations in one spatial dimension, including source terms corresponding to both of the competing α-effects in the evolution equation for the poloidal field. This system is solved using two different methods. In addition to solving the one-dimensional partial differential equations directly, using numerical techniques, we also use a local approximation to reduce the governing equations to a set of coupled ordinary differential equations (ODEs), which are studied using a combination of analytical and numerical methods.
Results. In the ODE model, it is straightforward to find parameters such that a series of bifurcations can be identified as the time delay is increased, with the dynamo transitioning from periodic states to chaotic states via multiply periodic solutions. Similar transitions can be observed in the full model, with the chaotically modulated solutions exhibiting solar-like behaviour.
Conclusions. Competing α-effects could explain the observed modulation in the solar cycle.
Key words: dynamo / magnetohydrodynamics (MHD) / Sun: activity / Sun: interior / Sun: magnetic fields
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.