Issue |
A&A
Volume 561, January 2014
|
|
---|---|---|
Article Number | A147 | |
Number of page(s) | 11 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201322853 | |
Published online | 28 January 2014 |
Discovery of secular variations in the atmospheric abundances of magnetic Ap stars⋆
1 Department of Physics & AstronomyThe University of Western Ontario, London, Ontario, N6A 3K7, Canada
e-mail: jbaile33@uwo.ca
2 Armagh Observatory, College Hill, Armagh, BT61 9 DG Northern Ireland, UK
Received: 15 October 2013
Accepted: 26 November 2013
Context. The stars of the middle main sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres. The presence of chemical peculiarities reveal the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. At present, little is known about the time evolution of these anomalous abundances, nor about the role that diffusion may play in maintaining them, during the main sequence lifetime of such a star.
Aims. We want to establish whether abundance peculiarities change as stars evolve on the main sequence, and provide observational constraints to diffusion theory.
Methods. We have performed spectral analysis of 15 magnetic Bp stars that are members of open clusters (and thus have well-known ages), with masses between about 3 and 4 M⊙. For each star, we measured the abundances of He, O, Mg, Si, Ti, Cr, Fe, Pr and Nd.
Results. We have discovered the systematic time evolution of trace elements through the main-sequence lifetime of magnetic chemically peculiar stars as their atmospheres cool and evolve towards lower gravity. During the main sequence lifetime, we observe clear and systematic variations in the atmospheric abundances of He, Ti, Cr, Fe, Pr and Nd. For all these elements, except He, the atmospheric abundances decrease with age. The abundances of Fe-peak elements converge towards solar values, while the rare-earth elements converge towards values at least 100 times more abundant than in the Sun. Helium is always underabundant compared to the Sun, evolving from about 1% up to 10% of the solar He abundance. We have attempted to interpret the observed abundance variations in the context of radiatively driven diffusion theory, which appears to provide a framework to understand some, but not all, of the anomalous abundance levels and variations that we observe.
Key words: stars: magnetic field / stars: chemically peculiar / stars: abundances / stars: atmospheres / stars: evolution
Based in part on observations made with the European Southern Observatory (ESO) telescopes under the ESO programmes 072.D-0410(A) and 086.D-0449(A). It is also based in part on observations carried out at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii.
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.