Issue |
A&A
Volume 561, January 2014
|
|
---|---|---|
Article Number | A51 | |
Number of page(s) | 3 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201321070 | |
Published online | 23 December 2013 |
Research Note
Position angles and coplanarity of multiple systems from transit timing
Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
e-mail: avivofir@astro.physik.uni-goettingen.de
Received: 9 January 2013
Accepted: 4 September 2013
Aims. We compare the apparent difference in timing of transiting planets (or eclipsing binaries) that are observed from widely separated locations (parallactic delay).
Methods. A simple geometrical argument allows us to show that the apparent timing difference also depends on the sky position angle of the planetary (or secondary) orbit, relative to the ecliptic plane.
Results. Our calculation of the magnitude of the effect for all currently known planets (should they exhibit transits) find that almost 200 of them – mostly radial-velocity detected planets – have predicted timing effects greater than 1 s. We also compute the theoretical timing precision for the PLATO mission, which will observe a similar stellar population and find that a 1 s effect will frequently be easily observable. We also find that the sky coplanarity of multiple objects in the same system can be probed more easily than the sky position angle of each of the objects separately.
Conclusions. We show that a new observable from transit photometry becomes available when very high-precision transit timing is available. We find that there is a good match between projected capabilities of the future space missions PLATO and CHEOPS and the new observable. We specify some initial science questions that this new observable may be able to address.
Key words: techniques: photometric / planetary systems
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.