Issue |
A&A
Volume 560, December 2013
|
|
---|---|---|
Article Number | A88 | |
Number of page(s) | 14 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201321834 | |
Published online | 10 December 2013 |
Dust-to-metal ratios in damped Lyman-α absorbers
Fresh clues to the origins of dust and optical extinction towards γ-ray bursts
1 Department of Particle Physics and Astrophysics, Faculty of Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
e-mail: annalisa.de-cia@weizmann.ac.il
2 Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland
3 European Southern Observatory, Alonso de Córdova 3107, 19001 Casilla, Santiago 19, Chile
4 Max-Planck Institut für Extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany
Received: 5 May 2013
Accepted: 18 September 2013
Motivated by the anomalous dust-to-metal ratios derived in the literature for γ-ray burst (GRB) damped Lyman-α absorbers (DLAs), we measure these ratios using the dust-depletion pattern observed in UV/optical afterglow spectra associated with the interstellar medium (ISM) at the GRB host-galaxy redshifts. Our sample consists of 20 GRB absorbers and a comparison sample of 72 DLAs toward quasars (QSOs) with redshift 1.2 < z < 4.0 and down to Z = 0.002 Z⊙ metallicities. The dust-to-metal ratio in QSO- and GRB-DLAs increases both with metallicity and metal column density, spanning ~10–110% of the Galactic value and pointing to a nonuniversal dust-to-metal ratio. The low values of dust-to-metal ratio suggest that low-metallicity systems have lower dust fractions than typical spiral galaxies and, perhaps, that the dust in these systems is produced inefficiently, i.e. by grain growth in the low-metallicity regime with negligible contribution from supernovae (SNe) and asymptotic giant branch (AGB) stars. On the other hand, some GRB- and QSO-DLAs show high dust-to-metal ratio values out to z ~ 4, requiring rapid dust production, such as in SN ejecta, but also in AGB winds and via grain growth for the highest metallicity systems. GRB-DLAs overall follow the dust-to-metal-ratio properties of QSO-DLAs, GRBs probing larger column and volume densities. For comparison, the dust-to-metal ratio that we derive for the SMC and LMC are ~82–100% and ~98% of the Galactic value, respectively. The literature dust-to-metal ratio of the low-metallicity galaxy I Zw 18 (<37%) is consistent with the distribution that we find. The dust extinction AV increases steeply with the column density of iron in dust, N(Fe)dust, calculated from relative metal abundances, confirming that dust extinction is mostly occurring in the host galaxy ISM. Most GRB-DLAs display log N(Fe)dust > 14.7, above which several QSO-DLAs reveal molecular hydrogen, making GRB-DLAs promising candidates for molecular detection and study.
Key words: gamma-ray burst: general / ISM: abundances / dust, extinction / quasars: absorption lines
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.