Issue |
A&A
Volume 557, September 2013
|
|
---|---|---|
Article Number | A99 | |
Number of page(s) | 18 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201321515 | |
Published online | 10 September 2013 |
The Extended GMRT Radio Halo Survey
I. New upper limits on radio halos and mini-halos⋆
1
Dipartimento di Fisica e AstronomiaUniversita di Bologna,
via Ranzani 1,
40126
Bologna,
Italy
e-mail:
rkale@ira.inaf.it
2
INAF-Istituto di Radioastronomia, via Gobetti 101,
40129
Bologna,
Italy
3
Department of Astronomy, University of Maryland,
College Park, MD
20742,
USA
4
Joint Space-Science Institute, University of
Maryland, College
Park, MD,
20742-2421,
USA
5
Laboratoire Lagrange, UMR7293, Université de Nice
Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, 06300
Nice,
France
6
Indian Institute of Science Education and Research
(IISER), 41108
Pune,
India
Received: 20 March 2013
Accepted: 12 June 2013
Context. A fraction of galaxy clusters host diffuse radio sources called radio halos, radio relics and mini-halos. These are associated with the relativistic electrons and magnetic fields present on ~Mpc scales in the intra-cluster medium.
Aims. We aim to carry out a systematic radio survey of all luminous galaxy clusters selected from the REFLEX and eBCS X-ray catalogues with the Giant Metrewave Radio Telescope, to understand the statistical properties of the diffuse radio emission in galaxy clusters.
Methods. We present the sample and first results from the Extended GMRT Radio Halo Survey (EGRHS), which is an extension of the GMRT Radio Halo Survey (GRHS, Venturi et al. 2007, 2008). Analysis of radio data at 610/ 235/ 325 MHz on 12 galaxy clusters are presented.
Results. We report the detection of a newly discovered mini-halo in the cluster RX J1532.9+3021 at 610 MHz. The presence of a small-scale relic (~200 kpc) is suspected in the cluster Z348. We do not detect cluster-scale diffuse emission in 11 clusters. Robust upper limits on the detection of radio halo of size of 1 Mpc are determined. We also present upper limits on the detections of mini-halos in a sub-sample of cool-core clusters. The upper limits for radio halos and mini-halos are plotted in the radio power- X-ray luminosity plane and the correlations are discussed. Diffuse extended emission that is not related to the target clusters, but detected as by-products in the sensitive images of two of the cluster fields (A689 and RX J0439.0+0715) is also reported.
Conclusions. Based on the information about the presence of radio halos (or upper limits), available on 48 clusters out of the total sample of 67 clusters (EGRHS+GRHS), we find that 23 ± 7% of the clusters host radio halos. The radio halo fraction rises to 31 ± 11%, when only the clusters with X-ray luminosities >8 × 1044 erg s-1 are considered. Mini-halos are found in ~50% of cool-core clusters. A qualitative examination of the X-ray images of the clusters with no diffuse radio emission indicates that a majority of these clusters do not show extreme dynamical disturbances and supports the idea that mergers play an important role in generating radio halos and relics. The analysis of the full sample will be presented in a future work.
Key words: radio continuum: galaxies / galaxies: clusters: general
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.