Issue |
A&A
Volume 553, May 2013
|
|
---|---|---|
Article Number | A119 | |
Number of page(s) | 15 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201220822 | |
Published online | 20 May 2013 |
Formation and evolution of interstellar filaments
Hints from velocity dispersion measurements⋆,⋆⋆
1 Laboratoire AIM, CEA/DSM – CNRS – Université Paris Diderot, IRFU/Service d’Astrophysique, C.E.A. Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
e-mail: doris.arzoumanian@ias.u-psud.fr, pandre@cea.fr
2 Present address: IAS, CNRS (UMR 8617), Université Paris-Sud, Bâtiment 121, 91400 Orsay, France
Received: 29 November 2012
Accepted: 12 March 2013
We investigate the gas velocity dispersions of a sample of filaments recently detected as part of the Herschel Gould Belt Survey in the IC 5146, Aquila, and Polaris interstellar clouds. To measure these velocity dispersions, we use 13CO, C18O, and N2H+ line observations obtained with the IRAM 30 m telescope. Correlating our velocity dispersion measurements with the filament column densities derived from Herschel data, we show that interstellar filaments can be divided into two regimes: thermally subcritical filaments, which have transonic velocity dispersions (cs ≲ σtot < 2 cs) independent of column density and are gravitationally unbound; and thermally supercritical filaments, which have higher velocity dispersions scaling roughly as the square root of column density (σtot ∝ Σ00.5) and which are self-gravitating. The higher velocity dispersions of supercritical filaments may not directly arise from supersonic interstellar turbulence but may be driven by gravitational contraction/accretion. Based on our observational results, we propose an evolutionary scenario whereby supercritical filaments undergo gravitational contraction and increase in mass per unit length through accretion of background material, while remaining in rough virial balance. We further suggest that this accretion process allows supercritical filaments to keep their approximately constant inner widths (~0.1 pc) while contracting.
Key words: stars: formation / ISM: clouds / ISM: structure / evolution / submillimeter: ISM
Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Appendix A available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.