Issue |
A&A
Volume 552, April 2013
|
|
---|---|---|
Article Number | A58 | |
Number of page(s) | 13 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201220728 | |
Published online | 25 March 2013 |
Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes
1
Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr.
150,
44780
Bochum,
Germany
2
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69,
53121
Bonn,
Germany
3
ASTRON, the Netherlands Institute for Radio Astronomy,
Postbus 2,
7990 AA
Dwingeloo, The
Netherlands
4
Astronomical Institute “Anton Pannekoek”, University of Amsterdam,
Science Park 904,
1098 XH
Amsterdam, The
Netherlands
5
Kapteyn Astronomical Institute, PO Box 800, 9700 AV
Groningen, The
Netherlands
6
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218,
USA
7
SRON Netherlands Insitute for Space Research, Sorbonnelaan 2,
3584 CA
Utrecht, The
Netherlands
8 ARC Centre of Excellence for All-sky astrophysics (CAASTRO),
Sydney Institute of Astronomy, University of Sydney, Australia
9
School of Physics and Astronomy, University of Southampton,
Southampton,
SO17 1BJ,
UK
10
Max Planck Institute for Astrophysics,
Karl Schwarzschild Str.
1, 85741
Garching,
Germany
11
Institute for Astronomy, University of Edinburgh, Royal
Observatory of Edinburgh, Blackford
Hill, Edinburgh
EH9 3HJ,
UK
12
Leiden Observatory, Leiden University,
PO Box 9513,
2300 RA
Leiden, The
Netherlands
13
University of Hamburg, Gojenbergsweg 112, 21029
Hamburg,
Germany
14
Jacobs University Bremen, Campus Ring 1, 28759
Bremen,
Germany
15
Leibniz-Institut für Astrophysik Potsdam (AIP),
An der Sternwarte
16, 14482
Potsdam,
Germany
16
Thüringer Landessternwarte, Sternwarte 5,
07778
Tautenburg,
Germany
17
Department of Astrophysics/IMAPP, Radboud University
Nijmegen, PO Box
9010, 6500 GL
Nijmegen, The
Netherlands
18
Laboratoire Lagrange, UMR 7293, Université de Nice
Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, 06300
Nice,
France
19
Laboratoire de Physique et Chimie de l’Environnement et de
l’Espace (LPC2E), UMR 7328 CNRS, 45071
Orléans Cedex 02,
France
20
Jodrell Bank Center for Astrophysics, School of Physics and
Astronomy, The University of Manchester, Manchester
M13 9PL,
UK
21
Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road,
Oxford
OX1 3RH,
UK
22
Astro Space Center of the Lebedev Physical Institute,
Profsoyuznaya str.
84/32, 117997
Moscow,
Russia
23 Center for Information Technology (CIT), University of
Groningen, The Netherlands
24
Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon,
9 Av. Charles
André, 69561
Saint Genis Laval Cedex,
France
25
Station de Radioastronomie de Nançay, Observatoire de Paris,
CNRS/INSU, 18330
Nançay,
France
26
LESIA, UMR CNRS 8109, Observatoire de Paris,
92195
Meudon,
France
27
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,
Cambridge,
MA
02138,
USA
28
Argelander-Institut für Astronomie, University of Bonn,
Auf dem Hügel 71,
53121
Bonn,
Germany
Received:
13
November
2012
Accepted:
25
February
2013
Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations – either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.
Key words: polarization / techniques: polarimetric
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.