Issue |
A&A
Volume 552, April 2013
|
|
---|---|---|
Article Number | A49 | |
Number of page(s) | 24 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201220307 | |
Published online | 21 March 2013 |
Limits on intermediate-mass black holes in six Galactic globular clusters with integral-field spectroscopy⋆,⋆⋆,⋆⋆⋆
1
European Southern Observatory (ESO),
Karl-Schwarzschild-Strasse 2,
85748
Garching,
Germany
e-mail:
nluetzge@eso.org
2
Gemini Observatory, Northern Operations Center, 670 N. A’ohoku,
Place Hilo, Hawaii, 96720, USA
3
Astronomy Department, University of Texas at Austin,
Austin, TX
78712,
USA
4
School of Mathematics and Physics, University of
Queensland, Brisbane,
QLD
4072,
Australia
5
Instituto de Astronomia, Universidad Nacional Autonoma de Mexico
(UNAM), A.P.
70-264, 04510
Mexico,
Mexico
6
University Observatory, Ludwig Maximilians
University, 81679
Munich,
Germany
7
Sterrewacht Leiden, Leiden University,
Postbus 9513, 2300 RA
Leiden, The
Netherlands
8
I.Physikalisches Institut, Universität zu Köln,
Zülpicher Str. 77, 50937
Köln,
Germany
Received: 30 August 2012
Accepted: 11 December 2012
Context. The formation of supermassive black holes at high redshift still remains a puzzle to astronomers. No accretion mechanism can explain the fast growth from a stellar mass black hole to several billion solar masses in less than one Gyr. The growth of supermassive black holes becomes reasonable only when starting from a massive seed black hole with mass on the order of 102−105 M⊙. Intermediate-mass black holes are therefore an important field of research. Especially the possibility of finding them in the centers of globular clusters has recently drawn attention. Searching for kinematic signatures of a dark mass in the centers of globular clusters provides a unique test for the existence of intermediate-mass black holes and will shed light on the process of black-hole formation and cluster evolution.
Aims. We are investigating six galactic globular clusters for the presence of an intermediate-mass black hole at their centers. Based on their kinematic and photometric properties, we selected the globular clusters NGC 1851, NGC 1904 (M 79), NGC 5694, NGC 5824, NGC 6093 (M 80), and NGC 6266 (M 62).
Methods. We used integral field spectroscopy to obtain the central velocity-dispersion profile of each cluster. In addition we completed these profiles with outer kinematic points from previous measurements for the clusters NGC 1851, NGC 1094, NGC 5824, and NGC 6093. We also computed the cluster photometric center and the surface brightness profile using HST data. After combining these datasets we compared them to analytic Jeans models. We used varying M/LV profiles for clusters with enough data points in order to reproduce their kinematic profiles in an optimal way. Finally, we varried the mass of the central black hole and tested whether the cluster is better fitted with or without an intermediate-mass black hole.
Results. We present the statistical significance, including upper limits, of the black-hole mass for each cluster. NGC 1904 and NGC 6266 provide the highest significance for a black hole. Jeans models in combination with a M/LV profile obtained from N-body simulations (in the case of NGC 6266) predict a central black hole of M• = (3 ± 1) × 103 M⊙ for NGC 1904 and M• = (2 ± 1) × 103 M⊙ for NGC 6266. Furthermore, we discuss the possible influence of dark remnants and mass segregation at the center of the cluster on the detection of an IMBH.
Key words: black hole physics / globular clusters: general / stars: kinematics and dynamics
Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (085.D-0928, 086.D-0573).
Tables 3 and 6 are available in electronic form at http://www.aanda.org
Reduced datacubes are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A49
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.