Issue |
A&A
Volume 549, January 2013
|
|
---|---|---|
Article Number | A124 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201220159 | |
Published online | 10 January 2013 |
Stellar irradiated discs and implications on migration of embedded planets
I. Equilibrium discs
1
University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte
d’Azur, Laboratoire Lagrange, BP
4229, 06304
Nice Cedex 4,
France
e-mail: bertram.bitsch@oca.eu
2
Institut für Astronomie & Astrophysik, Universität
Tübingen, Auf der Morgenstelle
10, 72076
Tübingen,
Germany
3
Department of Astronomy, PO Box 351580, University of Washington,
Seattle, WA
98195,
USA
Received:
3
August
2012
Accepted:
8
November
2012
Context. The strength and direction of migration of embedded low mass planets depends on the disc’s thermodynamic state. It has been shown that, in discs where the viscous heating is balanced by radiative transport, the migration can be directed outwards, a process which extends the lifetime of growing planetary embryos.
Aims. We investigate the influence of opacity and stellar irradiation on the disc thermodynamics. We focus on equilibrium discs, which have no net mass flux. Utilizing the resulting disc structure, we determine the regions of outward migration in the disc.
Methods. We performed two-dimensional numerical simulations of equilibrium discs with viscous heating, radiative cooling, and stellar irradiation. We used the explicit/implicit hydrodynamical code NIRVANA that includes a full tensor viscosity and stellar irradiation, as well as a two temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration of embedded planets was studied by using torque formulae.
Results. In the constant opacity case, our code reproduces the analytical results corresponding to a black-body disc: the stellar irradiation dominates in the outer regions – leading to flaring (H/r ∝ r2/7) – while the viscous heating dominates close to the star. In particular, we find that the inner edge of the disc should not be significantly puffed-up by the stellar irradiation. If the opacity depends on the local density and temperature, the structure of the disc is different, and several bumps in the aspect ratio H/r appear, due to transitions between different opacity regimes. The bumps in the disc structure are very important, as they can shield the outer disc from stellar irradiation.
Conclusions. Stellar irradiation is an important factor for determining the disc structure and has dramatic consequences for the migration of embedded planets. Compared to discs with only viscous heating and radiative cooling, a stellar irradiated disc features a much smaller region of outward migration for a range of planetary masses. This suggests that the region where the formation of giant planet cores takes place is smaller, which in turn might lead to a shorter growth phase.
Key words: accretion, accretion disks / planets and satellites: formation / hydrodynamics / radio continuum: galaxies / radiative transfer / planet-disk interactions
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.