Issue |
A&A
Volume 549, January 2013
|
|
---|---|---|
Article Number | A37 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201220136 | |
Published online | 13 December 2012 |
Interstellar H2 toward HD 147888 ⋆
Institute of Theoretical Physics and Astrophysics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
e-mail: fizpg@univ.gda.pl
Received: 31 July 2012
Accepted: 8 November 2012
The ultraviolet and far-ultraviolet spectra of HD 147888 allows the H2 vibrational level ν = 0 to be accessed along with higher vibrational levels of the ground H2 electronic level. The large number of H2 absorption lines in the HST spectra allows column densities to be determined even from a noisy spectra. We have determined column densities of the H2 molecule on vibrational levels ν = 0–5 and rotational levels J = 0–6 using the profile fitting method. No variations in the column densities of H2 on vibrationally excited levels were observed from 2000 through 2009. The ortho to para H2 ratio (O/P)* for the excited vibrational states ν = 1–4 equals to 1.13. For the lowest vibrational state ν = 0 and rotational level J = 1 the ortho to para H2 ratio is only 0.15. The temperature of ortho-para thermodynamical equilibrium is TOP = 42 ± 3 K.
The measurements of H2 column densities on excited vibrational levels (from the HST spectra) leads to constraints on the radiation field in photon-dominated region (PDR) models of the interstellar cloud towards HD 147888. The Meudon PDR model locates the cloud 0.62 pc from the star. The modeled hydrogen cloud density (89–336 cm-3) agrees with independent density estimations based on the C2 molecule and the chemical model. The observed (O/P)J = 1 and (O/P)* H2 ratios cannot be explained by a simple model.
Key words: ISM: clouds / ISM: molecules / ultraviolet: ISM
Based on observations made with the NASA/ESA Hubble Space Telescope and with NASA/Johns Hopkins University Far Ultraviolet Spectroscopic Explorer, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Support for FUSE data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.