Issue |
A&A
Volume 548, December 2012
|
|
---|---|---|
Article Number | A117 | |
Number of page(s) | 19 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201220451 | |
Published online | 03 December 2012 |
An investigation of star formation and dust attenuation in major mergers using ultraviolet and infrared data⋆
1
Division of Particle and Astrophysical SciencesNagoya
University,
Furo-cho,
Chikusa-ku
464-8602,
Japan
e-mail: yuan.fangting@g.mbox.nagoya-u.ac.jp
2
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique
de Marseille) UMR 7326, 13388
Marseille Cedex 13,
France
3
Instituto de Astrofísica de Andalucía (IAA – CSIC),
Glorieta de la Astronomía
s.n., 18008
Granada,
Spain
4
Centro Astronómico Hispano Alemán, C/ Jesús Durbán Remón 2-2,
04004
Almería,
Spain
Received: 27 September 2012
Accepted: 20 October 2012
Merger processes play an important role in galaxy formation and evolution. To study the influence of merger processes on the evolution of dust properties and cosmic star formation rate, we investigate a local sample of major merger galaxies and a control sample of isolated galaxies using GALEX ultraviolet (UV) and Spitzer infrared (IR) images. Through a statistical study, we find that dust attenuation in merger galaxies is enhanced with respect to isolated galaxies. We find this enhancement is contributed mainly by spiral galaxies in spiral-spiral (S-S) pairs, and increases with the increasing stellar mass of a galaxy. Combining the IR and UV parts of star formation rates (SFRs), we then calculated the total SFRs and specific star formation rates (SSFRs). We find the SSFRs to be enhanced in merger galaxies. This enhancement depends on galaxy stellar mass and the companion’s morphology, but depends little on whether the galaxy is a primary or secondary component or on the separation between two components. These results are consistent with a previous study based only on IR images. In addition, we investigate the nuclear contributions to SFRs. SFRs in paired galaxies are more concentrated in the central part of the galaxies than in isolate galaxies. Our studies of dust attenuation show that the nuclear parts of pairs most resemble ULIRGs. Including UV data in the present work not only provides reliable information on dust attenuation, but also refines analyses of SFRs.
Key words: ultraviolet: galaxies / infrared: galaxies / galaxies: interactions / galaxies: evolution
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.