Issue |
A&A
Volume 548, December 2012
|
|
---|---|---|
Article Number | A26 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201219984 | |
Published online | 14 November 2012 |
CFBDSIR2149-0403: a 4–7 Jupiter-mass free-floating planet in the young moving group AB Doradus?⋆
1 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France
e-mail: Philippe.Delorme@obs.ujf-grenoble.fr
2 Département de physique and Observatoire du Mont Mégantic, Université de Montréal, CP 6128, Succursale Centre-Ville, QC H3C 3J7 Montréal, Canada
3 Université de Franche Comté, Institut UTINAM CNRS 6213, Observatoire des Sciences de l’Univers THETA de Franche-Comté, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France
4 CRAL, UMR 5574 CNRS, École Normale Supérieure, 69364 Lyon Cedex 07, France
Received: 11 July 2012
Accepted: 25 September 2012
Using the CFBDSIR wide field survey for brown dwarfs, we identified CFBDSIRJ214947.2-040308.9, a late T dwarf with an atypically red J − KS colour. We obtained an X-Shooter spectra, with signal detectable from 0.8 μm to 2.3 μm, which confirmed a T7 spectral type with an enhanced Ks-band flux indicative of a potentially low-gravity, young object. The comparison of our near infrared spectrum with atmosphere models for solar metallicity shows that CFBDSIRJ214947.2-040308.9 is probably a 650−750 K, log g = 3.75−4.0 substellar object. Using evolution models, this translates into a planetary mass object with an age in the 20−200 Myr range. An independent Bayesian analysis from proper motion measurements results in a 87% probability that this free-floating planet is a member of the 50−120 Myr-old AB Doradus moving group, which strengthens the spectroscopic diagnosis of youth. By combining our atmospheric characterisation with the age and metallicity constraints arising from the probable membership to the AB Doradus moving group, we find that CFBDSIRJ214947.2-040308.9 is probably a 4−7 Jupiter mass, free-floating planet with an effective temperature of ~700 K and a log g of ~4.0, typical of the late T-type exoplanets that are targeted by direct imaging. We stress that this object could be used as a benchmark for understanding the physics of the similar T-type exoplanets that will be discovered by the upcoming high-contrast imagers.
Key words: stars: atmospheres / planets and satellites: atmospheres / surveys / methods: observational / techniques: spectroscopic / brown dwarfs
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.