Issue |
A&A
Volume 547, November 2012
|
|
---|---|---|
Article Number | A116 | |
Number of page(s) | 6 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201220248 | |
Published online | 08 November 2012 |
Radiation processes in the Seyfert galaxy NGC 4151
Institute of technology, University college of Blekinge,
371 79
Karlskrona,
Sweden
e-mail: meo@bth.se
Received:
17
August
2012
Accepted:
1
October
2012
Aims. The main aim of this work was to investigate if the radiative process photoexcitation by accidental resonance (PAR) is producing Fe II lines in the UV region of NGC 4151. At the same time I searched for collisionally excited Fe II emission. While doing so, the broad line region (BLR), intermediate line region (ILR) and narrow line region (NLR) contributions to the Mg II resonance doublet were also investigated.
Methods. The focus was on the 2000 to 3000 Å wavelength region, in which decay from both the collisionally and PAR excited Fe II levels would form emission lines. I examined three archived Space Telescope Imaging Spectrograph (STIS) spectra of NGC 4151. Theoretical spectra based on calculated ranges for possible fluxes of the collisionally excited lines and pumping rates through the Fe II channels were then fitted to the observed spectra
Results. I show that the UV region is influenced by PAR and that the Fe II fluorescence lines are clearly needed to explain the spectrum between 2000 to 3000 Å. The best fit of the theoretical spectra to the STIS spectra was obtained by assuming a similar radiation power of Fe+ ions and Mg+ ions.
Conclusions. The PAR is active in the BLR of NGC 4151 and the total power of the Fe II fluorescence is a significant fraction of the total emission in the 2000 to 3000 wavelength region. Therefore it is important to incorporate this in models of NGC 4151 and possibly also in models of other active galactic nuclei. There are also many collisionally excited Fe II lines that are blended by each other and are therefore not individually observable in the NGC 4151 spectra.
Key words: atomic processes / line: formation / galaxies: active / galaxies: Seyfert / galaxies: individual: NGC 4151
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.