Issue |
A&A
Volume 547, November 2012
|
|
---|---|---|
Article Number | A9 | |
Number of page(s) | 7 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201220091 | |
Published online | 18 October 2012 |
Pulsar timing irregularities and the imprint of magnetic field evolution
1
Departament de Física AplicadaUniversitat d’Alacant,
Ap. Correus 99,
03080
Alacant,
Spain
e-mail: Jose.Pons@ua.es
2
German Aerospace Center, Institute for Space Systems,
Robert-Hooke-Str.
7, 28359
Bremen,
Germany
3
Kepler Institute of Astronomy, University of Zielona Gora,
Lubuska 2,
65-265
Zielona Gora,
Poland
Received: 24 July 2012
Accepted: 4 September 2012
Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties.
Aims. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements.
Methods. We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study.
Results. We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n ~ 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs.
Conclusions. Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (≳ 1014 G) multipolar or toroidal components, even with a weak (~1012 G) dipolar field are consistent with the observed trend of the timing properties.
Key words: pulsars: general / stars: neutron / stars: magnetic field / stars: evolution
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.