Issue |
A&A
Volume 547, November 2012
|
|
---|---|---|
Article Number | A51 | |
Number of page(s) | 18 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201219669 | |
Published online | 25 October 2012 |
The size-luminosity relation at z = 7 in CANDELS and its implication on reionization ⋆
1
INAF – Osservatorio Astronomico di Roma, via Frascati 33,
00040
Monteporzio
Italy
e-mail: andrea.grazian@oa-roma.inaf.it
2
SUPA, Institute for Astronomy, University of Edinburgh, Royal
Observatory, Edinburgh
EH9 3HJ,
UK
3
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218,
USA
4
NOAO, 950 N. Cherry Avenue, Tucson, AZ
85719,
USA
5
UCO/Lick Observatory, University of California,
1156 High Street, Santa Cruz
CA, 95064, USA
6
Department of Astronomy, University of
Massachusetts, 710 North Pleasant
Street, Amherst,
MA
01003,
USA
7
Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA
91101,
USA
8
Department of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, PA
15260,
USA
9
INAF – Osservatorio Astronomico di Trieste, via G.B. Tiepolo
11, 34131
Trieste,
Italy
Received: 24 May 2012
Accepted: 25 August 2012
Context. The exploration of the relation between galaxy sizes and other physical parameters (luminosity, mass, star formation rate) has provided important clues for understanding galaxy formation, but such exploration has until recently been limited to intermediate redshift objects.
Aims. We use the currently available CANDELS Deep+Wide surveys in the GOODS-South, UDS and EGS fields, complemented by data from the HUDF09 program, to address the relation between size and luminosity at z ~ 7.
Methods. The six different fields used for this study are characterized by a wide combination of depth and areal coverage, well suited for reducing the biases on the observed size-magnitude plane. From these fields, we select 153 z-band dropout galaxies. Detailed simulations have been carried out for each of these six fields, inserting simulated galaxies at different magnitudes and half light radius in the two dimensional images for all the Hubble Space Telescope (HST) bands available and recovering them as carried out for the real galaxies. These simulations allow us to derive precisely the completeness as a function of size and magnitude and to quantify measurements errors/biases, under the assumption that the 2D profile of z = 7 galaxies is well represented by an exponential disk function.
Results. We find in a rather robust way that the half light radius distribution function of z ~ 7 galaxies fainter than J = 26.6 is peaked at ≤ 0.1 arcsec (or equivalently 0.5 kpc proper), while at brighter magnitudes high-z galaxies are typically larger than ~0.15 arcsec. We also find a well defined size-luminosity relation, Rh ∝ L1/2. We compute the luminosity function (LF) in the HUDF and P12HUDF fields, finding large spatial variation on the number density of faint galaxies. Adopting the size distribution and the size-luminosity relation found for faint galaxies at z = 7, we derive a mean slope of −1.7 ± 0.1 for the LF of LBGs at this redshift.
Conclusions. Using this LF, we find that the number of ionizing photons emitted from galaxies at z ~ 7 cannot keep the Universe re-ionized if the IGM is clumpy (CHII ≥ 3) and the Lyman continuum escape fraction of high-z LBGs is relatively low (fesc ≤ 0.3). If these results are confirmed and strengthened by future CANDELS data, in particular by the forthcoming deep observations in GOODS-South and North and the wide field COSMOS, we can put severe limits to the role of galaxies in the reionization of the Universe.
Key words: galaxies: distances and redshifts / galaxies: evolution / galaxies: high-redshift / galaxies: structure
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.